@inproceedings{guhr-etal-2025-rethinking,
title = "Rethinking Scene Segmentation. Advancing Automated Detection of Scene Changes in Literary Texts",
author = "Guhr, Svenja and
Mao, Huijun and
Lin, Fengyi",
editor = "Kazantseva, Anna and
Szpakowicz, Stan and
Degaetano-Ortlieb, Stefania and
Bizzoni, Yuri and
Pagel, Janis",
booktitle = "Proceedings of the 9th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature (LaTeCH-CLfL 2025)",
month = may,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.latechclfl-1.8/",
doi = "10.18653/v1/2025.latechclfl-1.8",
pages = "79--86",
ISBN = "979-8-89176-241-1",
abstract = "Automated scene segmentation is an ongoing challenge in computational literary studies (CLS) to approach literary texts by analyzing comparable units. In this paper, we present our approach (work in progress) to text segmentation using a classifier that identifies the position of a scene change in English-language fiction. By manually annotating novels from a 20th-century US-English romance fiction corpus, we prepared training data for fine-tuning transformer models, yielding promising preliminary results for improving automated text segmentation in CLS."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="guhr-etal-2025-rethinking">
<titleInfo>
<title>Rethinking Scene Segmentation. Advancing Automated Detection of Scene Changes in Literary Texts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Svenja</namePart>
<namePart type="family">Guhr</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Huijun</namePart>
<namePart type="family">Mao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fengyi</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 9th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature (LaTeCH-CLfL 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Kazantseva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stan</namePart>
<namePart type="family">Szpakowicz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefania</namePart>
<namePart type="family">Degaetano-Ortlieb</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuri</namePart>
<namePart type="family">Bizzoni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Janis</namePart>
<namePart type="family">Pagel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-241-1</identifier>
</relatedItem>
<abstract>Automated scene segmentation is an ongoing challenge in computational literary studies (CLS) to approach literary texts by analyzing comparable units. In this paper, we present our approach (work in progress) to text segmentation using a classifier that identifies the position of a scene change in English-language fiction. By manually annotating novels from a 20th-century US-English romance fiction corpus, we prepared training data for fine-tuning transformer models, yielding promising preliminary results for improving automated text segmentation in CLS.</abstract>
<identifier type="citekey">guhr-etal-2025-rethinking</identifier>
<identifier type="doi">10.18653/v1/2025.latechclfl-1.8</identifier>
<location>
<url>https://aclanthology.org/2025.latechclfl-1.8/</url>
</location>
<part>
<date>2025-05</date>
<extent unit="page">
<start>79</start>
<end>86</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Rethinking Scene Segmentation. Advancing Automated Detection of Scene Changes in Literary Texts
%A Guhr, Svenja
%A Mao, Huijun
%A Lin, Fengyi
%Y Kazantseva, Anna
%Y Szpakowicz, Stan
%Y Degaetano-Ortlieb, Stefania
%Y Bizzoni, Yuri
%Y Pagel, Janis
%S Proceedings of the 9th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature (LaTeCH-CLfL 2025)
%D 2025
%8 May
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-241-1
%F guhr-etal-2025-rethinking
%X Automated scene segmentation is an ongoing challenge in computational literary studies (CLS) to approach literary texts by analyzing comparable units. In this paper, we present our approach (work in progress) to text segmentation using a classifier that identifies the position of a scene change in English-language fiction. By manually annotating novels from a 20th-century US-English romance fiction corpus, we prepared training data for fine-tuning transformer models, yielding promising preliminary results for improving automated text segmentation in CLS.
%R 10.18653/v1/2025.latechclfl-1.8
%U https://aclanthology.org/2025.latechclfl-1.8/
%U https://doi.org/10.18653/v1/2025.latechclfl-1.8
%P 79-86
Markdown (Informal)
[Rethinking Scene Segmentation. Advancing Automated Detection of Scene Changes in Literary Texts](https://aclanthology.org/2025.latechclfl-1.8/) (Guhr et al., LaTeCHCLfL 2025)
ACL