@inproceedings{alies-etal-2025-measuring,
title = "Measuring Label Ambiguity in Subjective Tasks using Predictive Uncertainty Estimation",
author = "Alies, Richard and
Merdjanovska, Elena and
Akbik, Alan",
editor = "Peng, Siyao and
Rehbein, Ines",
booktitle = "Proceedings of the 19th Linguistic Annotation Workshop (LAW-XIX-2025)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.law-1.2/",
doi = "10.18653/v1/2025.law-1.2",
pages = "21--34",
ISBN = "979-8-89176-262-6",
abstract = "Human annotations in natural language corpora vary due to differing human perspectives. This is especially prevalent in subjective tasks. In these datasets, certain data samples are more prone to label variation and can be indicated as ambiguous samples."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="alies-etal-2025-measuring">
<titleInfo>
<title>Measuring Label Ambiguity in Subjective Tasks using Predictive Uncertainty Estimation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Richard</namePart>
<namePart type="family">Alies</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elena</namePart>
<namePart type="family">Merdjanovska</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Akbik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th Linguistic Annotation Workshop (LAW-XIX-2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Siyao</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ines</namePart>
<namePart type="family">Rehbein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-262-6</identifier>
</relatedItem>
<abstract>Human annotations in natural language corpora vary due to differing human perspectives. This is especially prevalent in subjective tasks. In these datasets, certain data samples are more prone to label variation and can be indicated as ambiguous samples.</abstract>
<identifier type="citekey">alies-etal-2025-measuring</identifier>
<identifier type="doi">10.18653/v1/2025.law-1.2</identifier>
<location>
<url>https://aclanthology.org/2025.law-1.2/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>21</start>
<end>34</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Measuring Label Ambiguity in Subjective Tasks using Predictive Uncertainty Estimation
%A Alies, Richard
%A Merdjanovska, Elena
%A Akbik, Alan
%Y Peng, Siyao
%Y Rehbein, Ines
%S Proceedings of the 19th Linguistic Annotation Workshop (LAW-XIX-2025)
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-262-6
%F alies-etal-2025-measuring
%X Human annotations in natural language corpora vary due to differing human perspectives. This is especially prevalent in subjective tasks. In these datasets, certain data samples are more prone to label variation and can be indicated as ambiguous samples.
%R 10.18653/v1/2025.law-1.2
%U https://aclanthology.org/2025.law-1.2/
%U https://doi.org/10.18653/v1/2025.law-1.2
%P 21-34
Markdown (Informal)
[Measuring Label Ambiguity in Subjective Tasks using Predictive Uncertainty Estimation](https://aclanthology.org/2025.law-1.2/) (Alies et al., LAW 2025)
ACL