@inproceedings{labib-etal-2025-culturally,
title = "Culturally Aware Content Moderation for {F}acebook Reels: A Cross-Modal Attention-Based Fusion Model for {B}engali Code-Mixed Data",
author = "Labib, Momtazul Arefin and
Rahman, Samia and
Murad, Hasan",
editor = "Alam, Mehwish and
Tchechmedjiev, Andon and
Gracia, Jorge and
Gromann, Dagmar and
di Buono, Maria Pia and
Monti, Johanna and
Ionov, Maxim",
booktitle = "Proceedings of the 5th Conference on Language, Data and Knowledge",
month = sep,
year = "2025",
address = "Naples, Italy",
publisher = "Unior Press",
url = "https://aclanthology.org/2025.ldk-1.13/",
pages = "118--129",
ISBN = "978-88-6719-333-2",
abstract = "The advancement of high-speed internet and affordable bandwidth has led to a significant increase in video content and has brought challenges in content moderation due to the spread of unsafe or harmful narratives quickly. The rise of short-form videos like ``Reels'', which is easy to create and consume, has intensified these challenges even more. In case of Bengali culture-specific content, the existing content moderation system struggles. To tackle these challenges within the culture-specific Bengali codemixed domain, this paper introduces ``UNBER'' a novel dataset of 1,111 multimodal Bengali codemixed Facebook Reels categorized into four classes: Safe, Adult, Harmful, and Suicidal. Our contribution also involves the development of a unique annotation tool ``ReelAn'' to enable an efficient annotation process of reels. While many existing content moderation techniques have focused on resource-rich or monolingual languages, approaches for multimodal datasets in Bengali are rare. To fill this gap, we propose a culturally aware cross-modal attention-based fusion framework to enhance the analysis of these fast-paced videos, which achieved a macro F1 score of 0.75. Our contributions aim to significantly advance multimodal content moderation and lay the groundwork for future research in this area."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="labib-etal-2025-culturally">
<titleInfo>
<title>Culturally Aware Content Moderation for Facebook Reels: A Cross-Modal Attention-Based Fusion Model for Bengali Code-Mixed Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Momtazul</namePart>
<namePart type="given">Arefin</namePart>
<namePart type="family">Labib</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samia</namePart>
<namePart type="family">Rahman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hasan</namePart>
<namePart type="family">Murad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Conference on Language, Data and Knowledge</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mehwish</namePart>
<namePart type="family">Alam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andon</namePart>
<namePart type="family">Tchechmedjiev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jorge</namePart>
<namePart type="family">Gracia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dagmar</namePart>
<namePart type="family">Gromann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="given">Pia</namePart>
<namePart type="family">di Buono</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Johanna</namePart>
<namePart type="family">Monti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maxim</namePart>
<namePart type="family">Ionov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Unior Press</publisher>
<place>
<placeTerm type="text">Naples, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">978-88-6719-333-2</identifier>
</relatedItem>
<abstract>The advancement of high-speed internet and affordable bandwidth has led to a significant increase in video content and has brought challenges in content moderation due to the spread of unsafe or harmful narratives quickly. The rise of short-form videos like “Reels”, which is easy to create and consume, has intensified these challenges even more. In case of Bengali culture-specific content, the existing content moderation system struggles. To tackle these challenges within the culture-specific Bengali codemixed domain, this paper introduces “UNBER” a novel dataset of 1,111 multimodal Bengali codemixed Facebook Reels categorized into four classes: Safe, Adult, Harmful, and Suicidal. Our contribution also involves the development of a unique annotation tool “ReelAn” to enable an efficient annotation process of reels. While many existing content moderation techniques have focused on resource-rich or monolingual languages, approaches for multimodal datasets in Bengali are rare. To fill this gap, we propose a culturally aware cross-modal attention-based fusion framework to enhance the analysis of these fast-paced videos, which achieved a macro F1 score of 0.75. Our contributions aim to significantly advance multimodal content moderation and lay the groundwork for future research in this area.</abstract>
<identifier type="citekey">labib-etal-2025-culturally</identifier>
<location>
<url>https://aclanthology.org/2025.ldk-1.13/</url>
</location>
<part>
<date>2025-09</date>
<extent unit="page">
<start>118</start>
<end>129</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Culturally Aware Content Moderation for Facebook Reels: A Cross-Modal Attention-Based Fusion Model for Bengali Code-Mixed Data
%A Labib, Momtazul Arefin
%A Rahman, Samia
%A Murad, Hasan
%Y Alam, Mehwish
%Y Tchechmedjiev, Andon
%Y Gracia, Jorge
%Y Gromann, Dagmar
%Y di Buono, Maria Pia
%Y Monti, Johanna
%Y Ionov, Maxim
%S Proceedings of the 5th Conference on Language, Data and Knowledge
%D 2025
%8 September
%I Unior Press
%C Naples, Italy
%@ 978-88-6719-333-2
%F labib-etal-2025-culturally
%X The advancement of high-speed internet and affordable bandwidth has led to a significant increase in video content and has brought challenges in content moderation due to the spread of unsafe or harmful narratives quickly. The rise of short-form videos like “Reels”, which is easy to create and consume, has intensified these challenges even more. In case of Bengali culture-specific content, the existing content moderation system struggles. To tackle these challenges within the culture-specific Bengali codemixed domain, this paper introduces “UNBER” a novel dataset of 1,111 multimodal Bengali codemixed Facebook Reels categorized into four classes: Safe, Adult, Harmful, and Suicidal. Our contribution also involves the development of a unique annotation tool “ReelAn” to enable an efficient annotation process of reels. While many existing content moderation techniques have focused on resource-rich or monolingual languages, approaches for multimodal datasets in Bengali are rare. To fill this gap, we propose a culturally aware cross-modal attention-based fusion framework to enhance the analysis of these fast-paced videos, which achieved a macro F1 score of 0.75. Our contributions aim to significantly advance multimodal content moderation and lay the groundwork for future research in this area.
%U https://aclanthology.org/2025.ldk-1.13/
%P 118-129
Markdown (Informal)
[Culturally Aware Content Moderation for Facebook Reels: A Cross-Modal Attention-Based Fusion Model for Bengali Code-Mixed Data](https://aclanthology.org/2025.ldk-1.13/) (Labib et al., LDK 2025)
ACL