@inproceedings{mccrae-etal-2025-cuac,
title = "Cua{\.{c}}: Fast and Small Universal Representations of Corpora",
author = "McCrae, John Philip and
Stearns, Bernardo and
Qazi, Alamgir Munir and
Banerjee, Shubhanker and
Ojha, Atul Kr.",
editor = "Alam, Mehwish and
Tchechmedjiev, Andon and
Gracia, Jorge and
Gromann, Dagmar and
di Buono, Maria Pia and
Monti, Johanna and
Ionov, Maxim",
booktitle = "Proceedings of the 5th Conference on Language, Data and Knowledge",
month = sep,
year = "2025",
address = "Naples, Italy",
publisher = "Unior Press",
url = "https://aclanthology.org/2025.ldk-1.17/",
pages = "153--161",
ISBN = "978-88-6719-333-2",
abstract = "The increasing size and diversity of corpora in natural language processing requires highly efficient processing frameworks. Building on the universal corpus format, Teanga, we present Cua{\.{c}}, a format for the compact representation of corpora. We describe this methodology based on short-string compression and indexing techniques and show that the files created with this methodology are similar to compressed human-readable serializations and can be further compressed using lossless compression. We also show that this introduces no computational penalty on the time to process files. This methodology aims to speed up natural language processing pipelines and is the basis for a fast database system for corpora."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mccrae-etal-2025-cuac">
<titleInfo>
<title>Cuaċ: Fast and Small Universal Representations of Corpora</title>
</titleInfo>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="given">Philip</namePart>
<namePart type="family">McCrae</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bernardo</namePart>
<namePart type="family">Stearns</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alamgir</namePart>
<namePart type="given">Munir</namePart>
<namePart type="family">Qazi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shubhanker</namePart>
<namePart type="family">Banerjee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Conference on Language, Data and Knowledge</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mehwish</namePart>
<namePart type="family">Alam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andon</namePart>
<namePart type="family">Tchechmedjiev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jorge</namePart>
<namePart type="family">Gracia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dagmar</namePart>
<namePart type="family">Gromann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="given">Pia</namePart>
<namePart type="family">di Buono</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Johanna</namePart>
<namePart type="family">Monti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maxim</namePart>
<namePart type="family">Ionov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Unior Press</publisher>
<place>
<placeTerm type="text">Naples, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">978-88-6719-333-2</identifier>
</relatedItem>
<abstract>The increasing size and diversity of corpora in natural language processing requires highly efficient processing frameworks. Building on the universal corpus format, Teanga, we present Cuaċ, a format for the compact representation of corpora. We describe this methodology based on short-string compression and indexing techniques and show that the files created with this methodology are similar to compressed human-readable serializations and can be further compressed using lossless compression. We also show that this introduces no computational penalty on the time to process files. This methodology aims to speed up natural language processing pipelines and is the basis for a fast database system for corpora.</abstract>
<identifier type="citekey">mccrae-etal-2025-cuac</identifier>
<location>
<url>https://aclanthology.org/2025.ldk-1.17/</url>
</location>
<part>
<date>2025-09</date>
<extent unit="page">
<start>153</start>
<end>161</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cuaċ: Fast and Small Universal Representations of Corpora
%A McCrae, John Philip
%A Stearns, Bernardo
%A Qazi, Alamgir Munir
%A Banerjee, Shubhanker
%A Ojha, Atul Kr.
%Y Alam, Mehwish
%Y Tchechmedjiev, Andon
%Y Gracia, Jorge
%Y Gromann, Dagmar
%Y di Buono, Maria Pia
%Y Monti, Johanna
%Y Ionov, Maxim
%S Proceedings of the 5th Conference on Language, Data and Knowledge
%D 2025
%8 September
%I Unior Press
%C Naples, Italy
%@ 978-88-6719-333-2
%F mccrae-etal-2025-cuac
%X The increasing size and diversity of corpora in natural language processing requires highly efficient processing frameworks. Building on the universal corpus format, Teanga, we present Cuaċ, a format for the compact representation of corpora. We describe this methodology based on short-string compression and indexing techniques and show that the files created with this methodology are similar to compressed human-readable serializations and can be further compressed using lossless compression. We also show that this introduces no computational penalty on the time to process files. This methodology aims to speed up natural language processing pipelines and is the basis for a fast database system for corpora.
%U https://aclanthology.org/2025.ldk-1.17/
%P 153-161
Markdown (Informal)
[Cuaċ: Fast and Small Universal Representations of Corpora](https://aclanthology.org/2025.ldk-1.17/) (McCrae et al., LDK 2025)
ACL