@inproceedings{li-etal-2025-1,
title = "1-2-3 Check: Enhancing Contextual Privacy in {LLM} via Multi-Agent Reasoning",
author = "Li, Wenkai and
Sun, Liwen and
Guan, Zhenxiang and
Zhou, Xuhui and
Sap, Maarten",
editor = "Derczynski, Leon and
Novikova, Jekaterina and
Chen, Muhao",
booktitle = "Proceedings of the The First Workshop on LLM Security (LLMSEC)",
month = aug,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.llmsec-1.9/",
pages = "115--128",
ISBN = "979-8-89176-279-4",
abstract = "Addressing contextual privacy concerns remains challenging in interactive settings where large language models (LLMs) process information from multiple sources. Building on the theory of contextual integrity, we introduce a multi-agent framework that decomposes privacy reasoning into specialized subtasks{---}extraction, classification{---}reducing the information load on any single agent while enabling iterative validation and more reliable adherence to contextual privacy norms. Experiments on the ConfAIde benchmark with two LLMs (GPT-4, Llama3) demonstrate that our multi-agent system substantially reduces private information leakage (36{\%} reduction) while maintaining the fidelity of public content compared to a single-agent system, showing the promise of multi-agent frameworks towards contextual privacy with LLMs."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2025-1">
<titleInfo>
<title>1-2-3 Check: Enhancing Contextual Privacy in LLM via Multi-Agent Reasoning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wenkai</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liwen</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhenxiang</namePart>
<namePart type="family">Guan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuhui</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maarten</namePart>
<namePart type="family">Sap</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the The First Workshop on LLM Security (LLMSEC)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jekaterina</namePart>
<namePart type="family">Novikova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Muhao</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-279-4</identifier>
</relatedItem>
<abstract>Addressing contextual privacy concerns remains challenging in interactive settings where large language models (LLMs) process information from multiple sources. Building on the theory of contextual integrity, we introduce a multi-agent framework that decomposes privacy reasoning into specialized subtasks—extraction, classification—reducing the information load on any single agent while enabling iterative validation and more reliable adherence to contextual privacy norms. Experiments on the ConfAIde benchmark with two LLMs (GPT-4, Llama3) demonstrate that our multi-agent system substantially reduces private information leakage (36% reduction) while maintaining the fidelity of public content compared to a single-agent system, showing the promise of multi-agent frameworks towards contextual privacy with LLMs.</abstract>
<identifier type="citekey">li-etal-2025-1</identifier>
<location>
<url>https://aclanthology.org/2025.llmsec-1.9/</url>
</location>
<part>
<date>2025-08</date>
<extent unit="page">
<start>115</start>
<end>128</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T 1-2-3 Check: Enhancing Contextual Privacy in LLM via Multi-Agent Reasoning
%A Li, Wenkai
%A Sun, Liwen
%A Guan, Zhenxiang
%A Zhou, Xuhui
%A Sap, Maarten
%Y Derczynski, Leon
%Y Novikova, Jekaterina
%Y Chen, Muhao
%S Proceedings of the The First Workshop on LLM Security (LLMSEC)
%D 2025
%8 August
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-279-4
%F li-etal-2025-1
%X Addressing contextual privacy concerns remains challenging in interactive settings where large language models (LLMs) process information from multiple sources. Building on the theory of contextual integrity, we introduce a multi-agent framework that decomposes privacy reasoning into specialized subtasks—extraction, classification—reducing the information load on any single agent while enabling iterative validation and more reliable adherence to contextual privacy norms. Experiments on the ConfAIde benchmark with two LLMs (GPT-4, Llama3) demonstrate that our multi-agent system substantially reduces private information leakage (36% reduction) while maintaining the fidelity of public content compared to a single-agent system, showing the promise of multi-agent frameworks towards contextual privacy with LLMs.
%U https://aclanthology.org/2025.llmsec-1.9/
%P 115-128
Markdown (Informal)
[1-2-3 Check: Enhancing Contextual Privacy in LLM via Multi-Agent Reasoning](https://aclanthology.org/2025.llmsec-1.9/) (Li et al., LLMSEC 2025)
ACL