@inproceedings{olsen-bloem-2025-quantifying,
title = "Quantifying Societal Stress: Forecasting Historical {L}ondon Mortality using Hardship Sentiment and Crime Data with Natural Language Processing and Time-Series",
author = "Olsen, Sebastian and
Bloem, Jelke",
editor = "Arachchige, Isuri Nanomi and
Frontini, Francesca and
Mitkov, Ruslan and
Rayson, Paul",
booktitle = "Proceedings of the First on Natural Language Processing and Language Models for Digital Humanities",
month = sep,
year = "2025",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2025.lm4dh-1.10/",
pages = "112--119",
abstract = "We study links between societal stress - quantified from 18th{--}19th century Old Bailey trial records - and weekly mortality in historical London. Using MacBERTh-based hardship sentiment and time-series analyses (CCF, VAR/IRF, and a Temporal Fusion Transformer, TFT), we find robust lead{--}lag associations. Hardship sentiment shows its strongest predictive contribution at a 5{--}6 week lead for mortality in the TFT, while mortality increases precede higher conviction rates in the courts. Results align with Epidemic Psychology and suggest that text-derived stress markers can improve forecasting of public-health relevant mortality fluctuations."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="olsen-bloem-2025-quantifying">
<titleInfo>
<title>Quantifying Societal Stress: Forecasting Historical London Mortality using Hardship Sentiment and Crime Data with Natural Language Processing and Time-Series</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Olsen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jelke</namePart>
<namePart type="family">Bloem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First on Natural Language Processing and Language Models for Digital Humanities</title>
</titleInfo>
<name type="personal">
<namePart type="given">Isuri</namePart>
<namePart type="given">Nanomi</namePart>
<namePart type="family">Arachchige</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francesca</namePart>
<namePart type="family">Frontini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Rayson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd., Shoumen, Bulgaria</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We study links between societal stress - quantified from 18th–19th century Old Bailey trial records - and weekly mortality in historical London. Using MacBERTh-based hardship sentiment and time-series analyses (CCF, VAR/IRF, and a Temporal Fusion Transformer, TFT), we find robust lead–lag associations. Hardship sentiment shows its strongest predictive contribution at a 5–6 week lead for mortality in the TFT, while mortality increases precede higher conviction rates in the courts. Results align with Epidemic Psychology and suggest that text-derived stress markers can improve forecasting of public-health relevant mortality fluctuations.</abstract>
<identifier type="citekey">olsen-bloem-2025-quantifying</identifier>
<location>
<url>https://aclanthology.org/2025.lm4dh-1.10/</url>
</location>
<part>
<date>2025-09</date>
<extent unit="page">
<start>112</start>
<end>119</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Quantifying Societal Stress: Forecasting Historical London Mortality using Hardship Sentiment and Crime Data with Natural Language Processing and Time-Series
%A Olsen, Sebastian
%A Bloem, Jelke
%Y Arachchige, Isuri Nanomi
%Y Frontini, Francesca
%Y Mitkov, Ruslan
%Y Rayson, Paul
%S Proceedings of the First on Natural Language Processing and Language Models for Digital Humanities
%D 2025
%8 September
%I INCOMA Ltd., Shoumen, Bulgaria
%C Varna, Bulgaria
%F olsen-bloem-2025-quantifying
%X We study links between societal stress - quantified from 18th–19th century Old Bailey trial records - and weekly mortality in historical London. Using MacBERTh-based hardship sentiment and time-series analyses (CCF, VAR/IRF, and a Temporal Fusion Transformer, TFT), we find robust lead–lag associations. Hardship sentiment shows its strongest predictive contribution at a 5–6 week lead for mortality in the TFT, while mortality increases precede higher conviction rates in the courts. Results align with Epidemic Psychology and suggest that text-derived stress markers can improve forecasting of public-health relevant mortality fluctuations.
%U https://aclanthology.org/2025.lm4dh-1.10/
%P 112-119
Markdown (Informal)
[Quantifying Societal Stress: Forecasting Historical London Mortality using Hardship Sentiment and Crime Data with Natural Language Processing and Time-Series](https://aclanthology.org/2025.lm4dh-1.10/) (Olsen & Bloem, LM4DH 2025)
ACL