@inproceedings{kolavi-etal-2025-nayana,
title = "Nayana {OCR}: A Scalable Framework for Document {OCR} in Low-Resource Languages",
author = "Kolavi, Adithya and
P, Samarth and
Jain, Vyoman",
editor = "Truong, Sang and
Putri, Rifki Afina and
Nguyen, Duc and
Wang, Angelina and
Ho, Daniel and
Oh, Alice and
Koyejo, Sanmi",
booktitle = "Proceedings of the 1st Workshop on Language Models for Underserved Communities (LM4UC 2025)",
month = may,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.lm4uc-1.11/",
doi = "10.18653/v1/2025.lm4uc-1.11",
pages = "86--103",
ISBN = "979-8-89176-242-8",
abstract = "We introduce Nayana, a scalable and efficient framework for adapting Vision-Language Models (VLMs) to low-resource languages. Despite significant advances, modern VLMs remain constrained by the scarcity of training data in non-English languages, limiting their global applicability. Our framework addresses this fundamental challenge through a novel layout-aware synthetic data generation pipeline combined with parameter-efficient adaptation techniques. Instead of requiring extensive manually annotated datasets, Nayana enables existing models to learn new languages effectively using purely synthetic data. Using Low-Rank Adaptation (LoRA), we demonstrate this capability across ten Indic languages: Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi, Odia, Punjabi, Tamil, and Telugu. Through extensive experiments in OCR tasks, we show that models can achieve strong performance in new languages without the traditional requirements of large-scale annotated datasets or extensive model modifications. Nayana{'}s success in adapting VLMs to new languages with synthetic data establishes a practical pathway for extending AI capabilities to underserved languages, particularly in scenarios where annotated data is scarce or unavailable."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kolavi-etal-2025-nayana">
<titleInfo>
<title>Nayana OCR: A Scalable Framework for Document OCR in Low-Resource Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Adithya</namePart>
<namePart type="family">Kolavi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samarth</namePart>
<namePart type="family">P</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vyoman</namePart>
<namePart type="family">Jain</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop on Language Models for Underserved Communities (LM4UC 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sang</namePart>
<namePart type="family">Truong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rifki</namePart>
<namePart type="given">Afina</namePart>
<namePart type="family">Putri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Duc</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Angelina</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Ho</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alice</namePart>
<namePart type="family">Oh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sanmi</namePart>
<namePart type="family">Koyejo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-242-8</identifier>
</relatedItem>
<abstract>We introduce Nayana, a scalable and efficient framework for adapting Vision-Language Models (VLMs) to low-resource languages. Despite significant advances, modern VLMs remain constrained by the scarcity of training data in non-English languages, limiting their global applicability. Our framework addresses this fundamental challenge through a novel layout-aware synthetic data generation pipeline combined with parameter-efficient adaptation techniques. Instead of requiring extensive manually annotated datasets, Nayana enables existing models to learn new languages effectively using purely synthetic data. Using Low-Rank Adaptation (LoRA), we demonstrate this capability across ten Indic languages: Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi, Odia, Punjabi, Tamil, and Telugu. Through extensive experiments in OCR tasks, we show that models can achieve strong performance in new languages without the traditional requirements of large-scale annotated datasets or extensive model modifications. Nayana’s success in adapting VLMs to new languages with synthetic data establishes a practical pathway for extending AI capabilities to underserved languages, particularly in scenarios where annotated data is scarce or unavailable.</abstract>
<identifier type="citekey">kolavi-etal-2025-nayana</identifier>
<identifier type="doi">10.18653/v1/2025.lm4uc-1.11</identifier>
<location>
<url>https://aclanthology.org/2025.lm4uc-1.11/</url>
</location>
<part>
<date>2025-05</date>
<extent unit="page">
<start>86</start>
<end>103</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Nayana OCR: A Scalable Framework for Document OCR in Low-Resource Languages
%A Kolavi, Adithya
%A P, Samarth
%A Jain, Vyoman
%Y Truong, Sang
%Y Putri, Rifki Afina
%Y Nguyen, Duc
%Y Wang, Angelina
%Y Ho, Daniel
%Y Oh, Alice
%Y Koyejo, Sanmi
%S Proceedings of the 1st Workshop on Language Models for Underserved Communities (LM4UC 2025)
%D 2025
%8 May
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-242-8
%F kolavi-etal-2025-nayana
%X We introduce Nayana, a scalable and efficient framework for adapting Vision-Language Models (VLMs) to low-resource languages. Despite significant advances, modern VLMs remain constrained by the scarcity of training data in non-English languages, limiting their global applicability. Our framework addresses this fundamental challenge through a novel layout-aware synthetic data generation pipeline combined with parameter-efficient adaptation techniques. Instead of requiring extensive manually annotated datasets, Nayana enables existing models to learn new languages effectively using purely synthetic data. Using Low-Rank Adaptation (LoRA), we demonstrate this capability across ten Indic languages: Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi, Odia, Punjabi, Tamil, and Telugu. Through extensive experiments in OCR tasks, we show that models can achieve strong performance in new languages without the traditional requirements of large-scale annotated datasets or extensive model modifications. Nayana’s success in adapting VLMs to new languages with synthetic data establishes a practical pathway for extending AI capabilities to underserved languages, particularly in scenarios where annotated data is scarce or unavailable.
%R 10.18653/v1/2025.lm4uc-1.11
%U https://aclanthology.org/2025.lm4uc-1.11/
%U https://doi.org/10.18653/v1/2025.lm4uc-1.11
%P 86-103
Markdown (Informal)
[Nayana OCR: A Scalable Framework for Document OCR in Low-Resource Languages](https://aclanthology.org/2025.lm4uc-1.11/) (Kolavi et al., LM4UC 2025)
ACL