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Abstract
In the quest to overcome language barriers,
encoder-decoder models like NLLB have ex-
panded machine translation to rare languages,
with some models (e.g., NLLB 1.3B) even train-
able on a single GPU. While general-purpose
LLMs perform well in translation, open LLMs
prove highly competitive when fine-tuned for
specific tasks involving unknown corpora. We
introduce LYRA (Language verY Rare for
All), a novel approach that combines open
LLM fine-tuning, retrieval-augmented gener-
ation (RAG), and transfer learning from related
high-resource languages. This study is exclu-
sively focused on single-GPU training to facil-
itate ease of adoption. Our study focuses on
two-way translation between French and Moné-
gasque — a rare language unsupported by exist-
ing translation tools due to limited corpus avail-
ability. Our results demonstrate LYRA’s effec-
tiveness, frequently surpassing and consistently
matching state-of-the-art encoder-decoder mod-
els in rare language translation.

1 Introduction

Machine translation has come a long way since
its inception in the 1940s. The methodol-
ogy evolved from the initial rule-based ap-
proach (Hutchins, 1986, 1997) to statistical ma-
chine translation (Brown et al., 1993; Koehn, 2009)
and most recently adopted neural systems as the de-
facto approach yielding superior results (Bahdanau,
2014; Cho, 2014). An important breakthrough oc-
curred with the advent of Transformers (Vaswani,
2017) whose attention-based architecture did not
only allow for better translation but paved the
way for an NLP revolution through LLMs (Brown,
2020; Radford, 2018; Minaee et al., 2024). The
considerable progress observed on a wide range of
NLP tasks is the combined result of the ingenuous
Transformer neural architecture, the availability
of large GPU compute resources and macroscopic
amounts of training data. However, the uneven data

amounts between different languages translate to
varying performances on NLP tasks (Joshi et al.,
2020; Blasi et al., 2022), including machine trans-
lation. Thus, contrary to widespread languages for
which large text corpora are available including par-
allel data, lesser known languages suffer from data
scarcity which makes it difficult to train deep learn-
ing models (Zhang and Zong, 2020). Moreover,
compensating this inequality by obtaining data for
low resource languages is expensive and logisti-
cally challenging (Nekoto et al., 2020; Kuwanto
et al., 2023; Orife et al., 2020).

This work is concerned with training a neural
machine translator between the French and Moné-
gasque language. A very low resource language
only spoken by around 5,000 people to date in the
Principality of Monaco and which, to our knowl-
edge, remains uncovered by any neural machine
translator. We take on the task of creating a paral-
lel French-Monégasque dataset enabling the train-
ing of translators and language models on this lan-
guage. We finetune multiple models on this task
and present our methodology called LYRA allow-
ing to optimize results with limited data (about 10K
parallel sentences and a dictionary).

2 Related works

Given the challenge it poses, the low-resource
setting has received much attention in the litera-
ture (Haddow et al., 2022; Hedderich et al., 2020;
Magueresse et al., 2020). The proposed strategies
include targeted data gathering (Hasan et al., 2020),
exploiting monolingual data (Gibadullin et al.,
2019), backtranslation (Sennrich, 2015), transfer
learning (Dabre et al., 2020; Zoph et al., 2016) and
multilingual models (Johnson et al., 2017).

The most notable effort towards a model with
high language coverage is NLLB (Costa-jussà et al.,
2022) (No Language Left Behind). The latter trans-
lator was trained for pairs among over 200 dif-
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Figure 1: Illustration of our method for building LYRA.

ferent languages using a Sparsely Gated Mixture
of Experts architecture. For this purpose, the au-
thors created the Flores-200 dataset consisting of
3000 parallel sentences establishing a benchmark
for multilingual machine translation. However, this
effort did not include the Monégasque language.

While NLLB uses an encoder-decoder architec-
ture specifically intended for translation, decoder-
only models also reached competitive performance
on multiple tasks including translation (Hendy
et al., 2023; Wei et al., 2022; Ouyang et al., 2022).
This motivated works to improve results with such
models (Xu et al., 2024; Yang et al., 2023; Alves
et al., 2024) since they offer a far more interest-
ing option due to their higher flexibility and im-
pressive multitasking abilities (Reynolds and Mc-
Donell, 2021; Kojima et al., 2022; Perez et al.,
2021). Moreover, decoder-only models can lever-
age strategies like RAG to improve performance
and enjoy greater attention in the literature lead-
ing to faster progress. Finally, these models hold
the same potential for multilingual translation and
transfer learning. Nonetheless, these references did
not consider low-resource languages.

Most recently, both model types were combined
by GenTranslate (Hu et al., 2024) which uses a
Seq2Seq model to sample translations that are fed
into an LLM to combine them into an improved
answer. Note however that this work assumes high
compute resources with multiple GPUs.

In this work, NLLB as well as a few open LLMs
are finetuned using LYRA on a newly created
French-Monégasque dataset using only a single
GPU machine. We compare their performances on
this translation task and showcase the benefits of
LYRA in the low-resource setting.

3 Data

Since we are unaware of any preexisting paral-
lel corpus involving Monégasque, we created a
French-Monégasque dataset using OCR from a few
sources including: A French-Monégasque dictio-

nary, a Monégasque grammar book, as well as a few
literary works available in both languages. These
include works such as the poem collection “Lettres
de mon moulin”, the play “Antigone” and some
Tintin comics. The acquired inputs were later com-
bined into parallel entries via manual annotation.

The dataset contains a total number of 10,794
parallel French-Monégasque sentences in addition
to 42,698 entries from the dictionary and the gram-
mar book which includes verb conjugations and
proverbs. The test set was constituted by selecting
sentences with high quality translation in order to
ensure a reliable basis for evaluation.

The fact that this unique existing dataset has un-
der 100K pairs makes the Monégasque language a
very low resource language based on the conven-
tions adopted by Costa-jussà et al. (2022).

4 Methods

The LYRA methodology, illustrated on Figure 1,
aims to maximize translation quality in the low data
context using three main strategies.

Leveraging related high-resource languages
Previous works demonstrated the benefits of knowl-
edge transfer in multilingual neural machine trans-
lation (Dabre et al., 2020; Zoph et al., 2016;
Maimaiti et al., 2019). In order to take advantage of
this phenomenon, we perform a preliminary fine-
tuning phase on translation between French and
Italian, which is a high resource language pair, be-
fore finetuning on French-Monégasque translation.
The idea is to exploit the grammatical similarity be-
tween Monégasque and Italian. Thus, in the prelim-
inary phase, the model learns to transition between
French and Italian-like grammatical structures on
plentiful data which facilitates the subsequent fine-
tuning on French-Monégasque translation.

Data standardization As often emphasized,
training models for NLP applications considerably
depends on data quality to achieve high perfor-
mance (Tokpanov et al., 2024; Hoffmann et al.,
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Figure 2: Comparison of models’ translation performance in both directions in terms of BLEU scores before and
after data standardization. The latter uniformly improves translation performance across all models.

2022; Rae et al., 2021). This aspect is all the more
important when data is scarce. We measure the im-
pact of careful data curation in the current setting
by training the candidate models on two versions
of the French-Monégasque dataset. The initial raw
version featured some issues of inconsistent capital-
ization and punctuation and used various quotation
marks. The impact of these details on downstream
performance should not be underestimated since
they can confuse the model by causing irregular
tokenization.

Considering the potential performance gain, we
invest the effort of standardizing the sentences in
the first version of the dataset to fix these issues
and obtain a curated second version.

Retrieval Augmented Generation For decoder-
only models, the training data can be used to im-
prove test-time performance by including the most
similar sentence or word pairs into the prompt.
Note that this is akin to few-shot prompting but
using embeddings to retrieve the most similar ex-
amples. Since the Monégasque language is un-
known to the available embedding models, the
French parts are used to generate an embedding
for each instance. For this purpose, words and
sentences are encoded using a high performing
model on French retrieval tasks. The latter is avail-
able on the HuggingFace Hub under the reference
BAAI/bge-multilingual-gemma2. Retrieval of
the nearest neighbors is then carried out based on
cosine similarity. The number of retrievals is fixed
to 10 instances.

5 Experiments

The impact of each strategy on translation quality is
evaluated by testing them sequentially. The effect
of data standardization is measured prior to testing
the other strategies. Performance is measured using
the BLEU score (Papineni et al., 2002) as well as
METEOR which is more correlated with human as-
sessment (Banerjee and Lavie, 2005). We also pro-

vide evaluations using the chrF++ metric (Popović,
2015) in Appendix A.

Models The focus is set on single-GPU train-
ing to make the experiments more relevant
for the low resource context. We fine-
tune some high-performing models on French-
Monégasque translation and assess the perfor-
mance gains from each strategy. The dis-
tilled model nllb-200-distilled-1.3B was cho-
sen as a representative of the NLLB encoder-
decoder model family since it outperforms the
3B model and reaches close performance to
the original 54B model at much lower compu-
tational costs (Costa-jussà et al., 2022). As
for decoder-only models, the candidates are the
public LLMs : Llama-3.1-8B (Dubey et al.,
2024) (LYRA-L), gemma-2-9b (LYRA-G) and
Mistral-Nemo-Instruct-2407 12B (LYRA-M).
This choice targets high performing models which
have benefited from multilingual pretraining, in-
cluding French and Italian (to which Monégasque
is related), while keeping our compute budget in
mind. The LLMs are finetuned using LoRA (Hu
et al., 2021) with the efficient implementation of
the unsloth library.

Given that Monégasque was not among
the languages covered by NLLB, the
nllb-200-distilled-1.3B model is fine-
tuned using the French-Monégasque data. In
order to maximize downstream performance, we
use NLLB’s Ligurian tokenizer on Monégasque
sentences. The rationale behind this choice is
that Ligurian (another low resource language
related to genoese) is an even closer language
to Monégasque than Italian. Therefore, using
the Ligurian tokenizer is likely to yield a more
useful representation of Monégasque text. All the
presented experiments use greedy decoding.

Effect of Data standardization The candidate
models are trained on both versions of the French-
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Monégasque dataset and evaluated on translation
in both directions. Figure 2 compares the perfor-
mances reached by each model by training on the
dataset before and after undergoing standardization.
We observe that all models improve their scores
by a significant amount thanks to the standardized
data.

We also note that translation quality is clearly
superior towards the French language. This is
explained by the fact that most models were pre-
trained on plentiful amounts of French text allow-
ing them to master this high-resource language be-
forehand. On the other hand, they only discover the
Monégasque language through our small dataset
which limits the proficiency they are able to reach.

Effect of RAG As previously mentioned, the
BAAI/bge-multilingual-gemma2 model is used
in order to generate embeddings of the French sen-
tences. This is done for the train and test sets and
the embeddings are used to improve test-time per-
formance by retrieving, for each test sample, the
10 nearest train samples and including them in the
prompt. Obviously, this can only be done for LLMs
and not for NLLB. The models are trained on the
standardized data and their BLEU and METEOR
scores with and without RAG are reported on Ta-
ble 1.

Significant improvements in BLEU scores are
seen for translation towards French across all mod-
els after the addition of RAG. However, LYRA-
G is the only one to benefit from RAG for the
fr→mo direction while LYRA-M suffers a signifi-
cant degradation of its score. These observations
may be explained by the fact that the embeddings
are based on the French part of the data only and
that the embedding model is originally based on
Gemma 2.

Effect of French-Italian finetuning We finally
evaluate the effect of a preliminary finetuning phase
on French-Italian translation before training on the
French-Monégasque data. This recipe is tested
using the opus-books dataset (Tiedemann, 2009)
which contains high quality French-Italian parallel
sentences. NLLB is excluded from this experiment
since it is considered to have already benefited from
transfer learning. Indeed, NLLB was pretrained on
over 200 languages including French, Italian and
Ligurian which is even closer to Monégasque.

The scores of models trained in this fashion and
tested with RAG are reported on Table 1 (omitting
RAG led to inferior results). A clear benefit is ob-

Model BLEU METEOR
fr→mo mo→fr fr→mo mo→fr

NLLB-200 1.3B 35.27 52.18 48.17 63.55
LYRA-L Instruct 31.62 47.49 49.35 65.20
+ RAG 31.32 52.67 49.45 70.04
++ Italian corpus 32.83 51.95 50.79 69.07

LYRA-G Instruct 33.16 52.12 51.47 69.40
+ RAG 34.42 58.10 52.91 74.31
++ Italian corpus 35.25 57.23 53.19 73.36

LYRA-M Instruct 33.46 51.49 51.77 69.02
+ RAG 30.69 56.75 48.38 72.38
++ Italian corpus 32.31 54.88 49.31 70.97

Table 1: Translation performance in both directions as
measured by BLEU and METEOR scores using the
standardized data and other methods. Bold numbers
represent best scores among all models.

served on fr→mo scores for LYRA-L and LYRA-
G which lets the latter virtually match NLLB’s
BLEU score. However, LYRA-M still attains its
best fr→mo score in the base setting. On the other
hand, some performance is lost in the mo→fr di-
rection. We posit that the LLMs’ pretrained pro-
ficiency in French slightly degrades after under-
going a finetuning procedure involving two other
languages.

6 Conclusion

In this work, we presented LYRA, a methodol-
ogy to boost machine translation performance de-
spite scarce data. We saw that enhancing data qual-
ity effectively improved results in general. RAG
also showed significant potential although some
model specific adaptation may sometimes be nec-
essary. Finally, we have also seen that models
can reach higher proficiency in a low resource lan-
guage thanks to transfer learning. Further gains
will likely be possible by finetuning future higher
performing LLMs. Finally, data augmentation is
another interesting research avenue to deal with the
low-resource setting.

7 Limitations

Although the results confirm the benefits of the
presented methodology, the latter still has its limi-
tations. For example, data curation cannot improve
performance beyond a certain point and should be
combined with data augmentation to alleviate data
scarcity. Moreover, RAG can only help perfor-
mance if train data are diverse enough and include
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relevant examples. Finally, not all low-resource
languages are related to high resource ones so that
transfer learning will not always be useful.
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A Additional results

The performances of the trained models as mea-
sured by the chrF++ metric (Popović, 2015) are
reported on Table 2. These figures mostly agree
with BLEU scores when comparing the models.

Figure 3 displays the evolution of BLEU scores
on translation in both directions through training
epochs. One can observe that, apart from NLLB,
most models quickly overfit the data due to their
limited quantity.

B Additional data details

We provide below a list of the sources used to con-
stitute the French-Monégasque parallel dataset on
which the models were trained:

Model chrF++
fr→mo mo→fr

NLLB-200 1.3B before std. 55.61 65.59
NLLB-200 1.3B 57.90 67.05
LYRA-L before std. 50.87 61.47
LYRA-L 53.26 63.90

+ RAG 53.78 68.03
++ Italian corpus 54.81 66.99

LYRA-G before std. 55.32 66.51
LYRA-G 55.48 67.87

+ RAG 57.32 71.89
++ Italian corpus 57.16 71.55

LYRA-M before std. 53.63 65.19
LYRA-M 55.44 67.55

+ RAG 52.11 69.75
++ Italian corpus 54.02 69.42

Table 2: Translation performance in both directions
as measured by chrF++ scores using the standardized
data and other methods. Bold numbers represent best
scores among all models. After preliminary finetuning
on French-Italian data, all models achieved superior
results using RAG rather than without.

• A French-Monégasque dictionary containing
two-way translations of single words as well
as proverbs.

• A Monégasque grammar book (Monégasque
Bescherelle) containing verb conjugations and
their translations into French.

• The “Üntra Nui” stories which is a Moné-
gasque chronicle.

• Poems & Fables from Monégasque culture.

• The play “Antigone” written by Jean Anouilh.

• The collection of short stories titled “Lettres
de mon moulin” by Alphonse Daudet.

• A collection of Monégasque songs.

• 3 chapters of Tintin comics available in both
languages. Namely :

– “Le secret de la Licorne”.
– “Le trésor de Rackham le Rouge”.
– “Les bijoux de la Castafiore”.

Table 3 shows a few examples of sentence pairs
before and after undergoing standardization. These
illustrate the fixed issues including excessive use
of ellipsis, non standard quotes, digital instead of
literal numbers and arbitrary onomatopoeia.

https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=farT6XXntP
https://openreview.net/forum?id=farT6XXntP
https://openreview.net/forum?id=farT6XXntP
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Figure 3: Evolution of translation performance in both directions for the considered models through training epochs
as measured by the BLEU score. The training of certain models was stopped early due to overfitting.

Monégasque French
Ah!... M’ asperavi?... Savi dunca perche sun
aiçi?..

Ah?... Vous m’attendiez? Vous connaissez donc
le but de ma visite?..

Ah ! M’ asperavi ? Savi dunca perche sun aiçi ? Ah ? Vous m’attendiez ? Vous connaissez donc le
but de ma visite ?

A grafia e tamben ë tradüçiue d’i testi d’achëstu
calendari sun de l’autu sarvu a tradüçiun d’u
puema «O belu Munegu»

La graphie ainsi que les traductions des textes de
ce calendrier sont de l’auteur excepté la traduction
du poème «Ô Monaco la belle»

A grafia e tamben ë tradüçiue d’i testi d’achëstu
calendari sun de l’autu sarvu a tradüçiun d’u
puema "O belu Munegu".

La graphie ainsi que les traductions des textes de
ce calendrier sont de l’auteur excepté la traduction
du poème "Ô Monaco la belle".

Ancœi, a Cumpagnia e cumpusa de trei ufiçiali,
düjanœve suta-ufiçiali e nuranta sete surdati

Actuellement son effectif est de trois officiers, 19
sous-officiers et 97 hommes du rang

Ancœi, a Cumpagnia e cumpusa de trei ufiçiali,
düjanœve suta-ufiçiali e nuranta sete surdati.

Actuellement son effectif est de trois officiers,
dix-neuf sous-officiers et quatre vingt dix-sept
hommes du rang.

E a fau tanta paciara, De « ci, ci », e de ci, cia »
Ch’ün caciaire, che passava Gh’a futüu üna füsiya
!

Et il fit tellement de potin, Des « ci, ci » et des
« ci, cia », Qu’un chasseur qui passait, L’abattit
d’un coup de fusil.

E a fau tanta paciara, ch’ün caciaire, che passava
gh’a futüu üna füsiya.

Et il fit tellement de potin qu’un chasseur qui pas-
sait, l’abattit d’un coup de fusil.

Table 3: Example instances from the French-Monégasque dataset before (red cells) and after standardization (green
cells).

The full dataset (before and after standardiza-
tion) can be found in the following github reposi-
tory https://github.com/EmertonData/lyra.

C Experimental details

All the models were trained using a single Nvidia
A100 40 GB GPU. NLLB-200 1.3B was finetuned
with learning rate: 10−5 and batch size 32.

Regarding the LLMs, the 4 bit quantized ver-
sions provided by unsloth were used as starting
points and finetuned with this library using LoRA

with the following configuration:

• r = 16

• lora_alpha = 16

• lora_dropout = 0.0

• bias = "none"

• target_modules = ["q_proj", "k_proj",
"v_proj", "o_proj", "gate_proj",
"up_proj", "down_proj"]

• use_rslora = True

• loftq_config = None

https://github.com/EmertonData/lyra
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A learning rate equal to 3e-5 was used for LYRA-
G and 1e-5 for LYRA-L and LYRA-M. Apart from
that, the following training parameters are com-
mon:

• batch_size = 48

• packing = False

• warmup_steps = 100

• optim = "adamw_8bit"

• weight_decay = 0.01

• lr_scheduler_type = "cosine"

• max_seq_length = 2048

All LLMs were trained on completions only us-
ing the appropriate data collator. Training was
launched for 10 epochs but early stopping was per-
formed based on validation loss as seen on Figure 3.


	Introduction
	Related works
	Data
	Methods
	Experiments
	Conclusion
	Limitations
	Additional results
	Additional data details
	Experimental details

