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Abstract

In this work, we explore different linear map-
ping techniques to learn cross-lingual docu-
ment representations from pre-trained multi-
lingual large language models for low-resource
languages. Three different mapping techniques
namely Linear Concept Approximation (LCA),
Linear Concept Compression (LCC), and Neu-
ral Concept Approximation (NCA) and four
multilingual language models such as mBERT,
mT5, XLM-R, and ErnieM were used to extract
embeddings. The inter-lingual representations
were created mappings the monolingual repre-
sentation extracted from multilingual language
models. The experimental results showed that
LCA and LCC significantly outperform NCA,
with models like ErnieM achieving the highest
alignment quality. Language pairs exhibit vari-
able performance, influenced by linguistic sim-
ilarity and data availability, with the Amharic-
English pair yielding particularly high scores.
The results showed the utility of LCA and LCC
in enabling cross-lingual tasks for low-resource
languages.

1 Introduction

“Attention is all you need.” This phrase marked
a milestone in Machine Learning (ML) and Nat-
ural Language Processing (NLP) (Vaswani et al.,
2023). Yet, how much attention is given to lan-
guages less common than English? Research on
NLP for low-resource languages remains sparse,
with studies nearly ten times fewer than those fo-
cused on English and citation rates almost twenty
times lower (Poupard, 2024). This imbalance cre-
ates a gap in NLP accessibility and development
for low-resource languages. While advancements
in NLP have been impressive, the overwhelming
focus on English limits technological inclusivity.
Large Language Models (LLMs), for instance, ex-
cel in machine translation, information retrieval,
question answering, and text summarization (Con-
neau et al., 2020; Fan et al., 2020; Tashu et al.,

2023), yet most models still lack robust support
for low-resource languages (Robinson et al., 2023).
Some progress has been made, such as multilingual
models for Indic (Dabre et al., 2021) and African
languages (Ogueji et al., 2021), but challenges re-
main.

Training such models requires extensive data
and computational resources, a significant hurdle
for low-resource languages where data availability
is limited. To address this, we focus on leverag-
ing existing resources and cross-lingual learning
techniques to align sentences across languages, in-
cluding low-resource ones. Cross-lingual learn-
ing aligns text representations from one language
to another, enabling effective knowledge transfer
and facilitating robust multilingual systems without
heavy reliance on machine translation (Tashu et al.,
2023). Alignment can occur at different levels:
word, sentence, or document. Word-level align-
ment brings semantically similar words close in a
shared embedding space, aiding tasks like bilingual
lexicon induction (Agirre, 2020). Sentence-level
alignment captures full context and meaning, us-
ing techniques like LASER (Artetxe and Schwenk,
2019) to generate language-independent sentence
embeddings. Document-level alignment broadens
this focus, enhancing multilingual information re-
trieval (Tashu et al., 2023).

Our study addresses a specific gap: exploring
effective methods for generating cross-lingual sen-
tence representations from pre-trained large lan-
guage models. Specifically, we ask: How effective
are different mapping methods for learning cross-
lingual sentence representations in low-resource
language pairs? Answering this will help improve
NLP inclusivity and capabilities for low-resource
languages. This work builds on work by Sala-
mon et al. (2021), Tashu et al. (2023), and Tashu
et al. (2024), focusing on sentence-level represen-
tations. By emphasizing sentence-level, rather than
document-level, alignment, we aim to provide a
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fine-grained understanding of multilingual seman-
tics and bridge gaps in NLP research for underrep-
resented languages.

2 Methodology

Tashu et al. (2023) proposed an approach using
different mapping techniques for obtaining inter-
lingual representations, which serves as an inspi-
ration for the current work. It involves the gener-
ation of document embeddings (representations)
for the source and target languages, and then find-
ing a mapping into an inter-lingual representation
space. It further allows cross-lingual transfer learn-
ing, hence avoiding the high costs of machine
translation (MT) systems and challenges with low-
resource languages (Tashu et al., 2023). This study
utilizes pre-trained language models to embed par-
allel data sets. It then employs mapping techniques
to align monolingual representation spaces, creat-
ing inter-lingual document representations. This
approach facilitates the effective transfer of linguis-
tic information across different languages

2.1 Embeddings
The growing need to support a wider range of lan-
guages has led to the development of multilingual
LLMs. They are pre-trained on large corpora of
multilingual data, with the expectation that lower
resource languages can benefit from the linguistic
similarities and shared representations among lan-
guage pairs (Xu et al., 2024). In this study, four
multilingual language models were used to extract
the unilingual representations individually for dif-
ferent pairs of languages: mBERT (Devlin et al.,
2018), mT5 (Xue et al., 2021), XLM-RoBERTa
(Conneau et al., 2020) and ErnieM (Ouyang et al.,
2021).

2.2 Mapping Techniques
Given two monolingual document collections,
Dx = {dx,1, . . . ,dx,n} and Dy = {dy,1, . . . ,dy,n}, first
a representation is extracted used a pretrained
MLLM. However, any representation learning
model which maps the document sets Dx and Dy

to vectors within the Rk is suitable. We obtain
sets of vectors, Cx = {d̂x,1, . . . , d̂x,n} ⊂ Rk, Cy =
{d̂y,1, . . . , d̂y,n} ⊂ Rk. One can think of Cx,Cy as
“Concept Spaces”, which encode more general con-
cepts of the language and their meaning. While
the vectors in Cx,Cy might capture concepts and
information, which are similar across languages,
they likely encode it in different ways. Therefore,

a direct comparison of d̂x,k, d̂y,k is yet unlikely to
reveal similarities on a content level.

2.2.1 Linear concept approximation (LCA)
LCA performs a linear transformation to map doc-
ument vectors from one language’s concept space
to another’s. This is achieved by:

1. Constructing the coefficient matrices for the
projections:

A = PXT YT ∈ Rkx×ky (1)

B = PYT XT ∈ Rky×kx , (2)

where PXT and PYT denote pseudo-inverses of
XT and YT respectively. The pseudo-inverse
is used to find the best-fit linear transformation
between the two spaces.

2. Calculating mappings for the document vec-
tors x ∈ Rkx in language Lx and y ∈ Rky in
language Ly:

x̂ = AT x ∈ Rky (3)

ŷ = BT y ∈ Rkx (4)

2.2.2 LCC
The LCC approach is used to align and compare
document representations from different languages
in a common space while preserving their infor-
mation. To reiterate, the objective of LCC is to
minimize the equation:

min
rg(A)=d

∥∥∥∥[Cx 0
0 Cy

]
A−

[
Cx Cx

Cy Cy

]∥∥∥∥2

2
. (5)

The implementation choice for LCC is described
by the following steps:

1. Constructing the training matrices X and Y:

X =

[
Cx 0
0 Cy

]
(6)

Y =

[
Cx Cx

Cy Cy

]
(7)

2. Using Ridge Regression to find the transfor-
mation matrix:
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The Ridge Regression helps find the best lin-
ear transformation that maps the source docu-
ments to the target documents while prevent-
ing overfitting by regularizing the size of the
transformation matrix. It aims to find a matrix
W that transforms X into Y while minimizing
the regularized least squares error:

Ŵ = argmin
W

{
∥Y−XW∥2

2 +α∥W∥2
2
}
, (8)

where α is the regularization parameter. The
matrix Ŵ serves as part of the linear map-
pings Ex and Ey. Let TX = XŴ be the trans-
formed data after applying the Ridge Regres-
sion model.

3. Transforming the test data:

For the test data, let Xtest and Ytest be the con-
catenated test matrices corresponding to the
source and target languages Lx and Ly, respec-
tively. After applying the Ridge Regression
model, we get:

TXtest = XtestŴ (9)

TXtest = YtestŴ. (10)

4. Dimensionality reduction with PCA:

After applying Ridge Regression, we employ
PCA to reduce the dimensionality of the trans-
formed test data and to map it back to the
original feature space for further evaluation.

2.2.3 NCA
Two neural network models were trained to map
representations between the source and target lan-
guages. The same neural network architecture was
employed for both mappings: from the source to
the target language and from the target to the source
language. Each model consists of an input layer
with dimensionality d, a hidden layer with 500
neurons using the Exponential Linear Unit (ELU)
activation function, and an output layer with dimen-
sionality d.

The ELU (Clevert et al., 2015) activation func-
tion is defined as:

ELU(x) =

{
x if x > 0,
α(exp(x)−1) if x ≤ 0,

(11)

where α is a hyperparameter. This function
helps mitigate the vanishing gradient problem and
speeds up learning by allowing negative values,
potentially improving model performance over
standard activation functions like Rectified Linear
Unit (ReLU).

The Huber loss function (Huber, 1964) combines
the advantages of mean squared error and mean
absolute error to handle outliers more robustly. It
is defined as:

Huber(a,δ) =

{
1
2 a2 for |a| ≤ δ,

δ(|a|− 1
2 δ) otherwise,

(12)

where α is the residual (the difference between
predicted and actual values) and δ is a threshold
parameter. This loss function provides smoothness
while being less sensitive to outliers than squared
error.

The Adam optimizer (Kingma and Ba, 2017)
integrates features from both Adaptive Gradient
Algorithm (AdaGrad) and Root Mean Square Prop-
agation (RMSProp), adjusting learning rates for
each parameter based on estimates of the first and
second moments of the gradients. The update rule
is:

θt+1 = θt −
η√

v̂t + ε
m̂t , (13)

where θ denotes the model parameters, η is the
learning rate, m̂t and v̂t are the bias-corrected esti-
mates of the first and second moments of the gradi-
ents, and ε is a small constant to prevent division
by zero.

3 Experimental Setup

3.1 Data

The NLLB dataset1 (Fan et al., 2020; Schwenk
et al., 2021) contains bitext for 1613 language pairs
(148 English-centric, 1465 non-English-centric).
It was created using metadata from mined bitexts
made available by Meta AI, leveraging the stopes
mining library2 and LASER3 encoders (Heffernan
et al., 2022). The innovation behind the NLLB
project (NLLB Team et al., 2022) stands in the

1Available at https://opus.nlpl.eu/NLLB/corpus/
version/NLLB

2stopes is a library for preparing data for MT research,
part of the No Language Left Behind (NLLB) project https:
//facebookresearch.github.io/stopes/

https://opus.nlpl.eu/NLLB/corpus/version/NLLB
https://opus.nlpl.eu/NLLB/corpus/version/NLLB
https://facebookresearch.github.io/stopes/
https://facebookresearch.github.io/stopes/
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provided solution for the automatic construction
of translation pairs, done by aligning sentences
from various collections of monolingual docu-
ments. This further enables the coverage of 200
languages by extending LASER’s language, and
the production of a substantial amount of data, in-
cluding for low-resource languages.

The dataset amounts to approximately 450GB
of data with over 1,500 language pairs, however
for the purpose of the current project, only a few
pairs were used: English-Amharic, Arabic-Somali,
Bemba-Afrikaans, and Igbo-Hausa. The selection
includes two Indo-European languages (English
and Afrikaans), four Afro-Asiatic (Arabic, Somali,
Amharic and Hausa), and two from the Niger-
Congo family (Bemba and Igbo). These pairs com-
prise a mixture of high and low-resource languages
from different language families.

3.2 Embedding the Data
To ensure a consistent and manageable dataset for
embedding, we sampled 100,000 sentences from
the NLLB dataset for each language pair. Due to
the smaller size of the dataset, only 58,000 sen-
tences were sampled for the Arabic-Somali lan-
guage pair. Only sentences containing a minimum
of 10 words were included in the sample to en-
sure sufficient contextual information for accurate
embeddings. This filtering step was crucial for
maintaining the quality and relevance of the data
used for embedding.

The embedding process was adapted for sen-
tences rather than documents, following the
methodology outlined by Tashu et al. (2024) in
a similar approach used for document embeddings.
Sentences were tokenized, truncated or padded to
the same maximum token length of a maximum of
128 tokens, and processed through the correspond-
ing models to compute embeddings. The attention
mask ensures that only relevant tokens are con-
sidered, optimizing the representation of sentence
semantics. The final hidden states from the model’s
encoder part are extracted to obtain embeddings for
each token within the sentence. These embeddings
are then aggregated using a global pooling opera-
tion to generate fixed-size vectors, ready for further
analysis and mapping methods.

3.3 Evaluation metrics
After generating embeddings using the previously
discussed models, in the evaluation phase, we ap-
ply the mapping methods individually to align the

embedding spaces between each source language
and its target counterpart, and vice versa, for each
language pair. We maintain consistency by evaluat-
ing using metrics such as Mate Retrieval Rate and
Mean Reciprocal Rank. This ensures direct com-
parison with previous studies (Tashu et al., 2024)
that mainly focused on higher-resource languages,
aiming to test the effectiveness of the mapping tech-
niques in cross-lingual representation tasks, partic-
ularly in low-resource language scenarios.

Mate Retrieval Rate assesses the similarity be-
tween two documents, the query and the retrieved
document. If the retrieved document matches the
query document, it is termed as a mate retrieval.
The mate retrieval rate is defined as:

MR(d) = argmaxSd ·T T
d , (14)

where S(d,d′) is given by:

S(d,d′) =

{
1 if d = d′

0 if d ̸= d′.
(15)

In this context, S represents the similarity between
two documents d and d′, and MR indicates the mate
retrieval for a document d in the source S and target
language T . Mate retrieval is deemed successful if
d and d′ are identical. Combining these equations,
the mate retrieval rate for all documents D can be
computed as:

RetrievalRate =
1
|D|

|D|

∑
d=1

S(d,MR(d)) (16)

Mean Reciprocal Rank quantifies how high-
ranked documents are, based on a similarity mea-
sure. Using cosine similarity, it is defined as:

C(d1,d2) =
d1 ·d2

∥d1∥ · ∥d2∥
, (17)

where the numerator is the inner product of the
document vectors d1 and d2, and the denominator
is the product of their magnitudes. The cosine simi-
larity approaches 1 if the documents are similar and
−1 if they are dissimilar. This similarity measure
can be extended to a cosine similarity matrix for all
documents. The rank r of a document is defined by
its cosine similarity compared to other documents.
If a document is most similar to itself in the tar-
get language, its rank is 1. These components are
combined to calculate the mean reciprocal rank:
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ReciprocalRank =
1
|D|

|D|

∑
d=1

1
rd

(18)

3.4 Experiments

In our experiments, each language in the pairs was
used once as the source and once as the target, re-
sulting in a total of eight pairs. These pairs were
embedded using the four MLLMs. Our goal was to
map from the source embedding space to the target
embedding space using the three different map-
ping methods(LCA, LCC, NCC) for each pair and
each embedding model. The performance of these
mappings was evaluated using both reciprocal rank
and mate retrieval. We evaluated the performance
across a range of dimensions from 100 up to 768,
incrementing by 50.

4 Results

In this section, we present the results obtained in
two parts: one focused on the pre-trained models,
and another one focused on the pairs of languages
used. Further, we provide the results across dimen-
sions for a selection of the experiments run.

4.1 Results by Models

We first analyze the performance of each mapping
technique based on the pre-trained models used
to generate the embeddings. The highest scores
for each language pair were obtained and plotted
as histograms to illustrate the performance varia-
tions across different models and mapping methods.
This allows us to evaluate which pre-trained models
contribute most effectively to the mapping quality
in the context of low-resource languages. The re-
sults showing the highest reciprocal rank scores are
illustrated in Figure 1 which presents the highest
values for both mate retrieval and reciprocal rank.

Figure 1: Highest reciprocal rank by models and map-
ping techniques

Among the mapping methods, LCC and LCA
achieved similar scores, with the highest recipro-
cal ranks of 0.778 and 0.737, respectively, both
reached with the ErnieM model. For NCA, scores
were only marginally higher than the baseline in
which no mapping approach was applied. Re-
garding model performance, ErnieM outperformed
other models across most mapping techniques.
With both LCC and LCA, ErnieM achieved strong
scores, indicating its robustness across mappings.
XLM-R was the second-best performing model
overall, reaching a high reciprocal rank of 0.791
with LCC and maintaining high scores with LCA.
This consistency underscores XLM-R’s strong per-
formance across various mapping techniques.

The mT5 model showed notable results, partic-
ularly with LCC, achieving a reciprocal rank of
0.726. It maintained respectable scores with LCA,
although these were slightly lower than XLM-R
and ErnieM. However, performance declined more
significantly with NCA. The mBERT model consis-
tently showed lower performance relative to the oth-
ers, with its best results obtained using LCC, which
yielded a reciprocal rank of 0.548—significantly
lower than the top-performing models. Although
LCA improved mBERT’s performance slightly, the
gains remained limited.

4.2 Results by Language Pairs
Next, we focus on the performance of each map-
ping technique based on the pairs of languages used.
The highest scores from all pre-trained models
were aggregated and plotted as histograms to show
the effectiveness of different mappings for each
language pair. This analysis helps in understanding
the challenges and successes of mapping between
specific low-resource language pairs and highlights
the relative performance of different mapping meth-
ods. The plot can be seen in Figure 2.

For the Hausa-Igbo (ha-ig) language pair, LCC
achieved the highest reciprocal rank of 0.568. For
the Igbo-Hausa (ig-ha) direction, LCA achieved
strong performance, with a reciprocal rank of 0.726.
In both directions, scores for LCA and LCC were
relatively close, ranging from 0.544 to 0.620, in-
dicating the robustness of these mapping methods
for these language pairs. For the Somali-Arabic
(so-ar) pair and its reverse, LCA produced high
scores of approximately 0.5, followed closely by
LCC with almost identical values for the Somali-
Arabic direction and slightly higher results for LCA
in the Arabic-Somali (ar-so) direction. However,
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Figure 2: Highest reciprocal rank by language pairs and
mapping techniques

both methods showed lower scores than for other
language pairs. NCA consistently underperformed
in this language pair, especially in the ar-so di-
rection, where scores were even lower than the
baseline. For the Bemba-Afrikaans (bem-af) and
Afrikaans-Bemba (af-bem) language pairs, scores
were comparatively lower, with reciprocal ranks
not exceeding 0.184. NCA performed close to the
baseline with a score near zero.

In contrast, the Amharic-English (am-en) lan-
guage pair achieved excellent results with LCA,
reaching the highest overall reciprocal rank of
0.840. LCC and LCA also performed well, with
the highest score across all language pairs for LCC
at 0.778. For the English-Amharic (en-am) direc-
tion, mapping methods yielded scores similar to the
am-en direction, with the highest LCA score across
all language pairs reached here at 0.737. NCA’s
performance was comparable to that in the ha-ig
and ig-ha pairs but was considerably lower than
other methods.

4.3 Results across Dimensions

To showcase the performance of the mapping tech-
niques across dimensions, we have selected a lan-
guage pair per mapping method. Given the similar-
ity in results between source-to-target and target-
to-source directions for the same language pairs,
we focus on a single direction to avoid redun-
dancy. Figure 3 presents the reciprocal rank ob-
tained across dimensions ranging from 100 to 768,
where LCA (Figure 3a), LCC (Figure 3b) and NCA
(Figure 3c) were used for ha-ig, so-ar and am-en,
respectively. The plots contain all embedding mod-
els, as well as the baselines, where no mapping was
employed.

Across dimensions, scores generally increased

for all models, while baselines (where no mapping
was used) showed little to no increase. mBERT
showed the highest performance for LCA and LCC
in the ha-ig and so-ar pairs, while mT5 performed
best with NCA in the am-en pair.

While higher dimensionalities generally corre-
lated with better performance, there were cases
where peak performance occurred at a lower di-
mensionality. For instance, ErnieM and XLM-R
both peaked at 550 dimensions for LCA, and XLM-
R peaked at 450 dimensions with LCC. For NCA,
early peak scores were observed with ErnieM and
XLM-R as well.

(a) LCA - ha-ig

(b) LCC - so-ar

(c) NCA - am-en

Figure 3: Reciprocal rank across dimensions using LCA,
LCC and NCA for different language pairs

5 Discussion

A key outcome of this study is the effective appli-
cation of LCA and LCC mapping techniques for
aligning cross-lingual embeddings, as both yielded
consistently higher scores than NCA across exper-
iments. This consistency suggests that LCA and
LCC can effectively capture and align semantic re-
lationships between languages, particularly in low-
resource settings. Our findings align with those
of Tashu et al. (2024), who also reported strong
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performance for LCA and LCC, supporting their
reliability in cross-lingual tasks. The relatively
lower performance of NCA may be attributed to
architectural limitations that limit its ability to cap-
ture the nuanced language similarities essential for
effective mapping, as noted by Tashu et al. (2024).

Model performance also varied considerably,
with ErnieM consistently outperforming the other
models and mBERT demonstrating the lowest
scores. This discrepancy may be due to the lim-
ited range of languages in mBERT’s pre-training
set, which included only three languages from our
study: English, Afrikaans, and Arabic. Conse-
quently, mBERT struggled with other language
pairs, underscoring the importance of diverse pre-
training datasets for effective multilingual repre-
sentation. In contrast, XLM-R and mT5, trained
on a broader range of lower-resource languages,
performed well across the board, highlighting their
adaptability and robustness in cross-lingual con-
texts.

The effectiveness of mapping techniques also
varied across language pairs, indicating the unique
linguistic challenges posed by different combina-
tions. For example, the ha-ig pair achieved the
highest reciprocal rank with LCC, while in the
ig-ha direction, LCA performed best, demonstrat-
ing strong alignment potential between these lan-
guages, likely due to their Afro-Asiatic language
roots. This performance indicates that mapping
techniques may benefit from inherent structural or
linguistic similarities between languages.

In the case of Somali-Arabic pairs, LCA and
LCC continued to perform well but with notable
score reductions compared to ha-ig. This out-
come may reflect the complexity of aligning Arabic
with Somali despite their shared Afro-Asiatic roots.
Variations in dialect and structure may contribute
to this difficulty, highlighting the need for more
sophisticated mapping approaches that account for
intra-family linguistic diversity.

The Bemba-Afrikaans (bem-af) and Afrikaans-
Bemba (af-bem) pairs consistently achieved the
lowest scores. Despite some improvement with
LCA and LCC, the low performance overall sug-
gests that the linguistic distance between Bemba,
a Niger-Congo language, and Afrikaans, an Indo-
European language, poses a significant challenge
for mapping. The scarcity of resources and po-
tential lack of shared linguistic structures likely
contribute to the difficulty in achieving effective
alignment.

The Amharic-English (am-en) pair, however,
showed exceptional performance with all mapping
methods, achieving the highest overall reciprocal
ranks. This strong alignment suggests high compat-
ibility, perhaps due to robust resource availability
for Amharic and English. Notably, the slight score
improvement in the am-en direction over en-am
suggests that directionality has less impact on re-
sults than factors like model pre-training and lin-
guistic similarity. These observations suggest that
both linguistic and resource factors play crucial
roles in mapping success and invite further inves-
tigation into the specific factors affecting cross-
lingual performance.

Finally, exploring mapping techniques across
different dimensions provided insights into the im-
pact of embedding dimensionality on alignment
quality. The results demonstrated that, generally,
increasing dimensionality improves scores for LCA
and LCC, though certain models achieved peak
performance at lower dimensions, suggesting that
optimal dimensionality may vary by model and
mapping technique. Running experiments across
various dimensions is valuable as it can reveal these
optimal configurations, guiding resource-efficient
early stopping strategies and reducing computa-
tional costs.

6 Conclusion

This study evaluated the effectiveness of multiple
mapping methods in aligning cross-lingual sen-
tence representations for pairs of low-resource lan-
guages, utilizing pre-trained multilingual LLMs.
We tested LCA, LCC, and NCA mapping tech-
niques across multiple model and language pair
combinations to assess their performance in low-
resource settings.

Our findings highlight the mapping techniques’
success in capturing semantic relationships across
languages, with LCA and LCC consistently out-
performing NCA. This outcome suggests that the
architectural limitations of NCA make it less ef-
fective in capturing the nuanced linguistic simi-
larities required for cross-lingual alignment tasks.
Additionally, the variability in results across mod-
els showed ErnieM’s superior performance overall,
with XLM-R and mT5 close behind, underscor-
ing the importance of diverse pre-training data for
robust multilingual performance. mBERT, by con-
trast, performed less effectively, highlighting the
limitations posed by limited language exposure in
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pre-training.
Furthermore, our results reveal significant perfor-

mance variations across language pairs, suggesting
that factors like linguistic similarity and resource
availability play essential roles in cross-lingual
mapping. Specifically, the high compatibility and
robust resource availability for Amharic-English
contributed to their superior scores, illustrating how
these factors can positively impact mapping per-
formance. Overall, these findings demonstrate the
utility of LCA and LCC as effective mapping meth-
ods for low-resource cross-lingual tasks and high-
light the importance of training data diversity in
enhancing model adaptability.
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