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Abstract

Semantic parsing and text generation exhibit re-
versible properties when utilizing Discourse
Representation Structures (DRS). However,
both processes—text-to-DRS parsing and DRS-
to-text generation—are susceptible to errors.
In this paper, we exploit the reversible na-
ture of DRS to explore both error propagation,
which is commonly seen in pipeline methods,
and the less frequently studied potential for
error correction. We investigate two pipeline
approaches: Parse-Generate-Parse (PGP) and
Generate-Parse-Generate (GPG), utilizing pre-
trained language models where the output of
one model becomes the input for the next.
Our evaluation uses the Parallel Meaning Bank
dataset, focusing on Urdu as a low-resource
language, Italian as a mid-resource language,
and English serving as a high-resource baseline.
Our analysis highlights that, while pipelines are
theoretically suited for error correction, they
more often propagate errors, with Urdu exhibit-
ing the greatest sensitivity, Italian showing a
moderate effect, and English demonstrating the
highest stability. This variation highlights the
unique challenges faced by low-resource lan-
guages in semantic processing tasks. Further,
our findings suggest that these pipeline meth-
ods support the development of more linguis-
tically balanced datasets, enabling a compre-
hensive assessment across factors like sentence
structure, length, type, polarity, and voice. Our
cross-linguistic analysis provides valuable in-
sights into the behavior of DRS processing in
low-resource contexts, demonstrating both the
potential and limitations of reversible pipeline
approaches.

1 Introduction

DRS offers a distinct advantage in multilingual
semantic processing through its language-neutral
representation capabilities (Kamp and Reyle, 1993).
This characteristic is particularly valuable for
languages with limited computational resources.

Derived from Discourse Representation Theory
(DRT), DRS provides a comprehensive formal
framework (Kamp et al., 2010) that captures com-
plex linguistic phenomena including anaphors, pre-
suppositions, temporal expressions, multisentence
discourses, and the nuanced semantics of negation
and quantification (Kamp and Reyle, 2013; Jaszc-
zolt and Jaszczolt, 2023). This universal applicabil-
ity makes DRS especially relevant for developing
semantic processing capabilities across diverse lin-
guistic contexts (Bos, 2021).

DRS applications span various NLP tasks, in-
cluding machine translation (van Noord et al.,
2018), semantic parsing (Noord, 2019; van Noord
et al., 2019), and text generation (Wang et al., 2021;
Amin et al., 2022; Liu et al., 2021; Amin et al.,
2024). These tasks exhibit inherent reversibility—
the output of one serving as input to the other—
a property that holds particular promise for lan-
guages with limited NLP infrastructure. Traditional
approaches, predominantly focused on English, re-
quire separate models for each task and language,
creating significant barriers for languages with lim-
ited available data.

While pre-trained language models have trans-
formed NLP capabilities, their impact on seman-
tic parsing and text generation varies significantly
across languages. The challenge is particularly
evident in cases where explicit meaning represen-
tation is not inherently integrated into the training
of these models (Amin et al., 2024). Despite re-
cent advances, both DRS parsing and generation
remain challenging (Wang et al., 2023), with pars-
ing mistakes leading to incorrect meaning represen-
tations and generation errors resulting in disfluent
text (Wang et al., 2021).

Our work introduces a novel pipeline approach
leveraging the reversible nature of semantic parsing
and text generation, focusing particularly on Urdu
and Italian. Without requiring additional model
training, we implement two pipeline setups using
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pre-trained language models: 1) Parse-Generate-
Parse (PGP), where input text is parsed, used to gen-
erate text, and then parsed again; and 2) Generate-
Parse-Generate (GPG), where a DRS is used to
generate text, which is parsed and then used to re-
generate text. We utilized the pipeline approaches
(PGP and GPG) to examine three categories of ex-
amples: (i) those showing improved performance,
indicating error correction or mitigation; (ii) those
remaining unchanged, highlighting the determinis-
tic behavior of neural models in DRS processing
through pipelines; and (iii) those with decreased
performance, signaling error amplification or prop-
agation (see Table 2 for exact results).

We conduct our evaluation on the Parallel Mean-
ing Bank1 (PMB) dataset (Abzianidze et al., 2017),
focusing specifically on Urdu as a low-resource
language, Italian as a mid-resource language, and
English as a high-resource baseline. The selection
of these languages is based on their representation
of distinct linguistic families, each characterized
by unique syntactic structures, word-order varia-
tions, morphological complexity, and differing lev-
els of resource availability. This diversity enables a
comprehensive comparative analysis, offering valu-
able insights into how resource availability and lin-
guistic characteristics influence the performance of
DRS-based semantic processing across languages.

The research questions addressed in this paper
are:

1. How does the reversible nature of semantic
parsing and text generation with DRS affect
error propagation and correction across differ-
ent languages?

2. Can language models be effectively utilized
in a pipeline approach to investigate error dy-
namics without additional model training?

3. What are the performance changes achieved
by the proposed reversible pipelines compared
to baseline models across different languages?

4. Which types of errors are more effectively
addressed or amplified by the PGP and GPG
pipelines in each language?

5. What are the capabilities and limitations of
the reversible pipeline approaches in different
linguistic contexts?

1The PMB is developed at the University of Groningen as
part of the NWO-VICI project “Lost in Translation – Found
in Meaning” (Project number 277-89-003), led by Johan Bos.

The key contributions of this paper are: (1)
proposing a method for investigating error dy-
namics in DRS-based NLP tasks by exploiting re-
versibility, (2) demonstrating the varied effects of
pipeline approach across multiple languages using
pre-trained language models without costly retrain-
ing, and (3) analyzing the capabilities and limita-
tions of the proposed pipelines through rigorous
cross-linguistic error analysis. To the best of our
knowledge, this study represents the first attempt
to exploit the reversible nature of DRS parsing and
generation to analyze error dynamics in a diverse
multilingual context2. While previous research has
primarily focused on either monolingual or multi-
lingual semantic parsing and generation tasks, our
work uniquely investigates the interplay between
these tasks through their reversibility.

The remaining paper is structured as follows:
Section 2 describes DRS and reviews related work
in semantic parsing and text generation; Section 3
describes our methodology and pipeline configura-
tions; Section 4 displays multilingual experimental
results in detail; Section 5 presents a detailed error
analysis with the discussion regarding the mitiga-
tion or amplification of errors; finally Section 6
concludes the paper, highlights limitations, and
suggests directions for future research.

2 Background and Related Work

This section outlines the DRS formalism (§ 2.1)
used in this study and reviews key research in se-
mantic parsing (§ 2.2) and text generation (§ 2.3).

2.1 Discourse Representation Structure

As a formal meaning representation, DRS was
developed to address semantic and pragmatic is-
sues related to anaphora and tense (Kasper, 1989).
It deals with a number of linguistic occurrences,
such as temporal expressions and presuppositions
(Bos, 2023). Unlike other formalisms used in large-
scale semantic annotation initiatives, e.g., Abstract
Meaning Representation (AMR) (Banarescu et al.,
2013), DRS is distinguished by its capacity to han-
dle logical negation, quantification, and discourse
relations, in addition to offering complete word
sense disambiguation and a language-neutral mean-
ing representation.

Figure 1 illustrates the different formats that can
be used to express DRS. Using boxes to hold dis-

2https://github.com/saadamin2k13/reversible-parsing-
and-generation.

https://pmb.let.rug.nl/
https://pmb.let.rug.nl/
https://github.com/saadamin2k13/reversible-parsing-and-generation
https://github.com/saadamin2k13/reversible-parsing-and-generation
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ice.n.01

time.n.08

melt.v.01

∈

∈

∈

Patient

Time
=

(d) DRS (graph notation)

(c) DRS (sequence box notation):
     ice.n.01   % The ice [0-7] 
     time.n.08 EQU now  % is [8-10] 
     melt.v.01 Patient -2 Time -1 % melting. [11-19] 

(a)  DRS (box notation):
            x1   e1   t1
         ice (x1)
         time (t1)
            t1 = now
 melt (e1)
    Time (e1, t1)

    Patient (e1, x1)

(b) DRS (clause notation):
b1 REF x1   % The [0...3] 
b1 PRESUPPOSITION b2 % The [0...3] 
b1 ice "n.01" x1   % ice [4...7] 
b2 REF t1   % is [8...10] 
b2 EQU t1 "now"  % is [8...10] 
b2 Time e1 t1   % is [8...10] 
b2 time "n.08" t1  % is [8...10] 
b2 REF e1   % melting [11...18] 
b2 Patient e1 x1  % melting [11...18] 
b2 melt "v.01" e1  % melting [11...18] 
    % . [18...19]

now

Figure 1: Different graphical representations of DRS
for the text “The ice is melting.” or (Urdu: “barf peghal
rahi hay.”)

course referents and conditions is one frequent nota-
tion. Discourse referents, like x1, serve as stand-ins
for newly presented entities. Using roles or compar-
ison operators, conditions describe these referents’
attributes, including the concepts to which they be-
long and their relationships with other referents.
Concepts are based on WordNet synsets (Fellbaum,
1998), such as male.n.02. VerbNet (Bonial et al.,
2011) is a resource used to generate thematic roles;
examples include Agent. Operators like <, >, ̸=,
and ¬ are used to create negations and compar-
isons between entities. Furthermore, conditions
might be complex, representing rhetorical linkages
between many sets of conditions or logical rela-
tions (negation, ¬). In order to make integration
with machine learning models easier, the box nota-
tion (Figure 1(a)) is converted into clause notation
(Figure 1(b)) (van Noord et al., 2018). This con-
version entails rearranging the structure so that the
discourse referents and conditions are positioned
before the label of the box.

Sequence Box Notation (SBN) (Figure 1(c)) is a
simplified version of DRS that emphasizes the se-
quential arrangement of logical entities (Bos, 2023).
Each word’s meaning is organized according to
an entity-role-index format in SBN, where indices
connect entities and roles and decorate the connec-
tions. Discourse relations, like NEGATION and
ELABORATION, are slightly modified to signal

the beginning of a new context. Subsequent indices,
marked with comparison symbols (<,>), establish
links between the newly formed context and an-
other context. SBN can be visually represented as
a directed acyclic graph, as seen in Figure 1(d). In
our experiments, we utilized the SBN representa-
tion (Figure 1(c)) and the directed acyclic graph
(DAG) format (Figure 1(d)) for semantic process-
ing tasks.

2.2 Semantic Parsing

Rule-based and neural network-based techniques
are the two main categories into which traditional
DRS parsing techniques can be divided. The Boxer
system is a well-known paradigm among rule-
based approaches that blend statistical methodolo-
gies with rules (Bos, 2008). In order to achieve
performance that is on par with or even better
than BERT-based models, (Poelman et al., 2022)
has more recently built a multilingual DRS parser
that makes use of already-existing Universal De-
pendency parsers. In this sector, neural models
have emerged as the main method because of
their persistent high performance (van Noord et al.,
2018; Wang et al., 2023; Amin et al., 2024). Be-
yond sequence-to-sequence models, two distinct
research directions focus on tree-based approaches
(Liu et al., 2021) and graph-based methods (Fan-
cellu et al., 2019; Fu et al., 2020). Notably, Fu
et al.’s (2020) marks the first effort toward multi-
lingual DRS parsing.

2.3 Text Generation

While DRS parsing has long been a well-
established area, NLP researchers have recently
shifted their focus toward generating text from
DRS (Basile and Bos, 2011; Wang et al., 2021;
Amin et al., 2022; Wang et al., 2023; Amin et al.,
2024). Similar to DRS parsing, past work on gen-
erating text from DRS has mainly fallen into two
categories: rule-based methods (Basile and Bos,
2011) and neural network-based methods (Wang
et al., 2021; Amin et al., 2022; Wang et al., 2023;
Amin et al., 2024). Initial efforts in DRS-to-Text
generation identified key challenges such as lex-
icalization, aggregation, and generating referenc-
ing expressions (Basile and Bos, 2011). A recent
practical implementation of text generation utilized
bidirectional LSTM (bi-LSTM) based sequence-to-
sequence models to produce English text from DRS
(Wang et al., 2021; Amin et al., 2022, 2024). To ad-
dress the difficulties in generating text from DRS,
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including condition ordering and variable name
issues, tree-LSTM-based techniques have gained
popularity (Liu et al., 2021). The development of
the mBART-based multilingual DRS-to-Text gen-
eration model coincided with the emergence of
state-of-the-art Transformer models (Wang et al.,
2023).

3 Methods

Our study departs from the standard rule-based and
neural network-based methods for DRS parsing
and text generation. We offer a novel perspective
that takes advantage of the DRS reversible capabil-
ities that do not require any explicit design of rules
or external tools, in contrast to rule-based systems
like Boxer or the more recent multilingual DRS
parser which rely on hand-crafted rules and com-
mercial dependency parsers (Bos, 2008; Poelman
et al., 2022). Instead, our work presents a pipeline
approach that takes advantage of the complemen-
tary benefits offered by pre-trained language mod-
els. Our approach cascades these reversible pro-
cesses into two different pipelines, PGP and GPG,
so as to identify error mitigation or amplification
that might occur in the generation or parsing phase,
without requiring extra rule engineering or model
training.

In our PGP and GPG pipelines, we employed
byT5 (Xue et al., 2022) due to the following factors:
(i) multilingual model can generalize better across
languages and tasks; (ii) char-level/byte-level tok-
enization strategy helps the model understand com-
plex language patterns, scripts, characters, and se-
mantic information; (iii) when it comes to spelling
and pronunciation-sensitive tasks, byte-level mod-
els outperform other models due to their greater
resilience to noisy data; (iv) byT5 is also referred
to as a token-free model as it operates directly on
raw UTF-8 data without generating sub-word or
word-based vocabulary; and (v) most importantly,
byT5 has the state-of-the-art results on multilingual
NLP benchmarks outperforming other models (Xue
et al., 2022; Stankevičius et al., 2022; Belouadi and
Eger, 2023).

PMB is a multilingual dataset comprising se-
mantic representations in English, Italian, German,
Dutch, and Chinese. Leveraging the language-
neutral nature of DRS, we transformed English
DRS-Text pairs into Urdu through a systematic ap-
proach involving syntactic structure, concept and
word alignment, grammatical genders, and cross-

lingual adaptation through named entities. This
hybrid methodology resulted in the first compre-
hensive semantic resource for Urdu3, comprising
3,000 manually annotated data instances. DRS
transformations were achieved through rule-based
techniques and human annotation. Text translations
were initially generated using the Google Translate
API and subsequently verified through manual in-
spection. Urdu examples were divided into 1,200
training, 900 development, and 900 test examples.
For Italian, the dataset consisted of 5,061 train-
ing examples, 555 development examples, and 555
test examples. For English, the dataset contained
152,808 training examples, 1,132 development ex-
amples, and 1,132 test examples.

To enhance dataset diversity and complexity, we
applied multi-dimensional augmentation strategies,
including named entities, lexical (encompassing
common nouns, adjectives, adverbs, and verbs),
and grammatical augmentations. This approach
resulted in a ninefold increase in the training data
examples applied to all three languages, i.e., EN, IT,
and UR. For experimentation, we fine-tuned byT5
on our fully augmented DRS-Text pairs, achiev-
ing state-of-the-art performance in both seman-
tic parsing and text generation tasks4. We im-
plemented a two-stage fine-tuning strategy con-
sistent with (Zhang et al., 2024). The first stage
involved fine-tuning the model on silver data for
3 epochs to establish foundational DRS knowl-
edge. The second stage focused on gold data fine-
tuning for 10 epochs. Experimental parameters
included AdamW optimizer, polynomial learning
rate decay (1e−4), batch size of 32, maximum
sequence length of 512, and GeGLU activation
function. To evaluate the impact of the pipeline
approach, we utilized SMATCH for semantic pars-
ing (Cai and Knight, 2013), while BLEU (Papineni
et al., 2002), METEOR (Banerjee and Lavie, 2005),
ROUGE (Lin, 2004), COMET (Rei et al., 2020),
chrF (Popović, 2015), and BERTScore (Hanna and
Bojar, 2021) were applied to assess text generation
outcomes.

3.1 PGP

The PGP pipeline is designed to identify error
dynamics—mitigation or amplification—in the se-

3Urdu PMB is not part of the official website yet, but can
be provided freely for scientific purposes.

4All six models, encompassing three languages (EN, IT,
UR) and two tasks (parsing and generation), are available at
https://huggingface.co/saadamin2k13

https://huggingface.co/saadamin2k13
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Experimentation Language S-Parsing Generation Results
Type Type S-F1 BLEU MET. CMT. chrF B_Scr. ROUGE

without pipeline
EN

93.56 71.01 87.67 95.81 84.97 98.54 –
with pipeline 93.06 69.25 86.73 95.33 83.77 98.35 –

without pipeline
IT

90.56 56.76 72.67 89.97 70.59 92.85 –
with pipeline 89.19 53.06 69.68 88.53 67.54 91.88 –

without pipeline
UR

79.77 53.31 53.07 – 51.49 88.33 59.40
with pipeline 76.42 48.72 45.98 – 44.87 86.27 53.07

Table 1: Experimental results of parsing and generation with and without pipeline approach on standard test sets for
English, Italian, and Urdu. The best results are underlined. Note: S-Parsing = Semantic Parsing; S-F1 = SMATCH
F1-Score; MET. = METEOR; CMT. = COMET; B_Scr. = BERT-Score.

mantic parsing task by propagating the input text
through three stages: parsing, generation, and pars-
ing again. The pipeline operates as follows: (1) The
input text is first processed by the parser model,
which generates a DRS. (2) The generated DRS
is then passed to the generator model, which pro-
duces a text output based on the DRS represen-
tation. (3) Finally, the generated text is fed into
the same parser model, resulting in a new DRS
representation. Figure 2 displays the graphical rep-
resentation of the proposed PGP pipeline.

Text Generator

Text

Parsing Generation Parsing

Parser

DRS

input

output

input input

output

Parser DRS
output

Figure 2: Graphical representation of PGP pipeline.

3.2 GPG

Similarly, the GPG pipeline is designed to iden-
tify error dynamics in the text generation task by
propagating the input DRS through three stages:
generation, parsing, and generation again. The
pipeline operates as follows: (1) The input DRS
is first processed by the generator model, which
produces a text output. (2) The generated text is
then passed to the parser model, resulting in a new
DRS representation. (3) Finally, the parsed DRS
is fed into the same generator model, producing a
new text output. Graphically, the GPG pipeline is
shown in Figure 3.

By iteratively propagating the data through these
reversible pipelines, errors introduced in the initial
parsing (generation) stage can be potentially ana-
lyzed in the subsequent generation (parsing) and
parsing (generation) stages, leveraging the comple-
mentary strengths of the pre-trained models.

DRS Parser

DRS

Generation Parsing Generation

Generator

Text

input
output

input input

output

Generator Text
output

Figure 3: Graphical representation of GPG pipeline.

4 Results

We experimented with three distinct languages—
Urdu (UR), Italian (IT), and English (EN)—using
the standard test set from the dataset. The results
reveal complex patterns of performance changes
across languages and metrics as shown in Table 1.

4.1 PGP Evaluation

The PGP pipeline was evaluated using SMATCH,
an overlap-based metric typically used in AMR
parsing (Cai and Knight, 2013), which computes
the F1-score of matched triples between system-
generated and gold standard DRS representations.
The results in Table 1 indicate that the PGP pipeline
generally retains parsing accuracy across multiple
languages, but with variations depending on lan-
guage complexity.

For English, the pipeline performed determinis-
tically, with only a marginal decrease in SMATCH
F1-score from 93.56 to 93.06, a mere 0.5% de-
crease. This demonstrates that the pipeline intro-
duces minimal errors, making it highly efficient
for semantic parsing tasks in a rich-resourced lan-
guage i.e., English. For Italian, a slight decrease in
the F1-score (from 90.56 to 89.19) was observed,
representing a 1.37% decrease. While Italian’s
more complex sentence structure and grammar
present challenges, the PGP pipeline still performs
admirably, showing promise for further language-
specific improvements. In Urdu, the F1-score
decreased more noticeably, from 79.77 to 76.42
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Language Imp. Type Ex. Testset Ex. Improved Ex. Same Ex. Decreased

English
Parsing

1132
49 (+4.33%) 975 (86.13%) 108 (-9.54%)

Generation 35 (+3.09%) 1015 (89.66%) 82 (-7.24%)

Italian
Parsing

555
29 (+5.23%) 446 (80.36%) 80 (-14.41%)

Generation 24 (+4.32%) 438 (78.92%) 93 (-16.76%)

Urdu
Parsing

900
114 (+12.66%) 449 (49.88%) 337 (-37.44%)

Generation 114 (+12.66%) 401 (44.55%) 385 (-42.77%)

Table 2: Performance metrics of multilingual semantic parsing and generation indicating the total number of
examples, with the number and percentage of improved, same, and decreased categories.

(a 3.35% drop), reflecting the greater challenges
posed by its rich morphology and syntax. De-
spite these challenges, the pipeline holds potential
even without extensive pre-training or fine-tuning,
suggesting that further adaptation could yield im-
proved results for morphologically complex lan-
guages.

The parsing performance breakdown (see Ta-
ble 2) further highlights language-specific trends.
For English, out of 1132 examples, 49 (4.33%) im-
proved, 975 (86.13%) remained the same, and 108
(9.54%) showed decreased performance. Italian
demonstrated similar trends with 29 (5.23%) im-
provements, 446 (80.36%) unchanged examples,
and 80 (14.41%) showing decreased performance
out of 555 examples. Urdu, however, showed
the most variability, with 114 (12.66%) examples
showing improvement, 449 (49.88%) remaining
the same, and a notable 337 (37.44%) showing
decreased performance out of 900 examples.

4.2 GPG Evaluation
For the GPG pipeline, we evaluated text gener-
ation performance using both rule-based BLEU,
METEOR, chrF, ROUGE, neural model-based
COMET and pre-trained model-based BERT-Score
metrics to assess the quality of generated text com-
pared to reference text across English, Italian, and
Urdu. COMET was not used for Urdu due to lack
of specific evaluation datasets, and ROUGE was
excluded for English and Italian as it is not ideal
for evaluating text generation in rich-resource and
mid-resource languages. Table 1 lists multilingual
text generation results across different evaluation
measures. The GPG pipeline maintains strong per-
formance, especially for English text generation,
with only minor declines across BLEU (71.01 to
69.25), METEOR (87.67 to 86.73), and chrF (84.97
to 83.77), indicating that the generated text remains
highly comparable to the original output.

For Italian, although there was a slight decrease

in BLEU (56.76 to 53.06), METEOR (72.67 to
69.68), and chrF (70.59 to 67.54), the GPG pipeline
still performed commendably, demonstrating its
capability to handle more linguistically diverse lan-
guages. In Urdu, despite its morphological com-
plexity, the pipeline still captures the essence of sen-
tence structure. However, larger declines in BLEU
(55.31 to 48.72), METEOR (53.07 to 45.98), chrF
(51.49 to 44.87), and ROUGE (59.40 to 53.07) in-
dicate the need for further optimization in handling
morphologically rich languages like Urdu.

The generation performance breakdown (see Ta-
ble 2) complements these metric-based results. For
English, 35 (3.09%) out of 1132 examples showed
improvement, 1015 (89.66%) remained unchanged,
and 82 (7.24%) showed decreased performance. In
Italian, 24 (4.32%) out of 555 examples showed im-
provement, 438 (78.92%) remained the same, and
93 (16.76%) showed decreased performance. Urdu
displayed the most variation, with 114 (12.66%)
examples showing improvement, 401 (44.55%) re-
maining unchanged, and 385 (42.77%) showing
decreased performance out of 900 examples.

In the broad spectrum of evaluation, both the PGP
and GPG pipelines demonstrate potential for han-
dling multilingual semantic parsing and text genera-
tion tasks. For English, the pipelines preserve much
of the original performance with only minor fluc-
tuations, underscoring their robustness. Even for
Italian and Urdu, where challenges due to linguistic
complexity are more pronounced, the pipelines pro-
vide a strong foundation for further improvements.
The decrease in performance, particularly for Ital-
ian and Urdu, underscores areas for improvement
but is balanced by the pipelines’ overall effective-
ness in multilingual contexts.

The results indicate that with minimal language-
specific adaptations, especially for Urdu, the
pipeline is capable of generating high-quality re-
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sults. These experiments pave the way for further
exploration into how reversible semantic parsing
and text generation can be leveraged to enhance
semantic processing in a multilingual context.

5 Analysis and Discussion

To understand why PGP and GPG pipeline ap-
proaches often result in error amplification rather
than mitigation, we conducted a systematic analy-
sis focusing on the impact of linguistic imbalance
in the dataset (§ 5.1), error patterns in pipeline
approaches (§ 5.2), performance impact through
cross-lingual analysis (§ 5.3), and revealing the
pipeline approach (§ 5.4).

5.1 Linguistic Imbalance in the Dataset

For linguistic imbalance, we conducted analysis
across five linguistic dimensions: sentence length
(Short, Medium, Long), sentence types (Declara-
tive, Exclamatory, Imperative, Interrogative), struc-
tural complexity (Simple, Complex, Compound,
Compound-Complex), polarity (Affirmative, Neg-
ative), and voice (Active, Passive). This multi-
faceted and multilingual analysis aims to identify
specific linguistic phenomena that may contribute
to pipeline performance degradation.

5.1.1 Sentence Length
In our analysis, English training data is biased to-
wards longer sentences, while the test set favors
medium-length sentences, contributing to perfor-
mance degradation in short and medium categories.
Italian shows a similar trend, with the test set domi-
nated by medium and short sentences, creating chal-
lenges in handling complex, long sentences. Con-
versely, Urdu exhibits consistent medium-length
sentence representation but suffers greater perfor-
mance decline due to linguistic complexities such
as SOV word order and morphology. This dispar-
ity across languages and sentence lengths suggests
that each language’s unique structural properties,
combined with length mismatches, significantly im-
pact pipeline performance (see Appendix C.1 with
Table 5 for sentence splits and Table 6 for results).

5.1.2 Sentence Type
English training data is heavily skewed toward
declarative sentences, while the test set has a
more balanced representation of declarative and
interrogative sentences. This distribution shift im-
pacts pipeline performance, particularly in declar-
ative. Italian maintains stable declarative repre-

sentation between training and test sets but still
experiences significant performance degradation,
especially with interrogative sentences. Urdu also
has a high proportion of declarative sentences in
both training and test sets but suffers the most
severe performance drops across types, particu-
larly for imperative sentences. Appendix C.2 ex-
plains in detail the sentence type imbalance (see
Table 7) and results (see Table 8). These findings
suggest language-specific distribution imbalances
contribute to pipeline performance inconsistencies.

5.1.3 Structural Complexity
The analysis shows that Urdu and Italian data are
heavily skewed towards simple sentence structures,
with simple sentences comprising over 88% in both
training and test sets. English data, while still
dominated by simple sentences, has a more bal-
anced distribution with greater representation of
complex and compound structures in the training
set. This imbalance across sentence structures re-
sults in a general performance decline for all lan-
guages as structural complexity increases, with the
pipeline approach showing some advantage in han-
dling compound sentences in Italian but lagging
for complex structures in English and Urdu. These
findings highlight the need for language-specific
strategies to address structural complexity. We have
listed a detailed analysis in Table 9 and Table 10
(see Appendix C.3).

5.1.4 Polarity
The analysis of sentence polarity reveals that En-
glish and Urdu exhibit a strong bias toward affirma-
tive sentences, with English showing 84.73% and
Urdu 88.09% affirmative sentences in the training
set. In contrast, Italian is predominantly biased
towards negative sentences, constituting 60.80%
in the training set. This pattern persists in the test
sets, with English (91.34%) and Urdu (90.00%)
maintaining high percentages of affirmatives, while
Italian continues to favor negatives (63.42%)—see
Table 11 and Table 12 in Appendix C.4. Despite
these biases, the non-pipeline approach generally
outperforms across all languages, suggesting ro-
bust processing capabilities across both affirmative
and negative sentence types.

5.1.5 Voice
The analysis of sentence voice reveals a strong bias
toward active voice across English, Italian, and
Urdu (see Table 13 and Table 14 in Appendix C.5).
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In the training data, active voice dominates with
90.58% in English, 92.06% in Italian, and 92.01%
in Urdu. This trend continues in the test sets, where
active voice sentences increase to 93.37%, 94.05%,
and 93.78%, respectively. Notably, while both
English and Italian demonstrate higher SMATCH
scores for passive voice sentences despite their
lower frequency, Urdu exhibits a consistent chal-
lenge in processing passive constructions compared
to active ones. This suggests that, while active
voice is favored across languages, the performance
dynamics vary significantly, especially in Urdu.

5.2 Error Patterns in Pipeline Processing

The PGP and GPG pipeline approaches exhibit
complex error dynamics that warrant detailed anal-
ysis. Our investigation focuses on examining spe-
cific types of errors that emerge and propagate
through the pipeline stages. This analysis reveals
systematic patterns in how errors evolve and am-
plify, providing insights into the limitations of
pipeline processing for semantic parsing and gen-
eration tasks.

5.2.1 Semantic Parsing Errors
In the PGP pipeline, four key errors significantly
impact processing accuracy. Table 3 in Appendix A
reports these errors in detail.
Erroneous WordNet Sense Assignment occurs when
the parser initially assigns the wrong sense to a
word (fly.v.01 vs. fly.v.05), as seen in the sen-
tence “Let’s fly a kite,” leading to a cascade of in-
correct interpretations through the pipeline stages.
Omission of Logical Concepts is another critical
failure, illustrated by questions like “Is your father
Spanish?” where the parser may neglect essential
logical elements e.g., time.n.08 EQU now, result-
ing in a distorted semantic representation as the
pipeline progresses.
Additionally, the Generation of Incorrect The-
matic Roles manifests in examples like “I caught
a fish!” where initial role assignments, such as
Agent/Recipient and Experiencer, can deterio-
rate, creating complex misassignments that deviate
from the original meaning.
Lastly, Erroneous Index Assignment occurs when
the numeric indices that link logical concepts are
incorrectly applied, as in the example “Mayuko
designed a dress for herself.” Indices are used to
connect concepts, with positive indices pointing
to subsequent logical concepts (Beneficiary +1)
and negative indices indicating references to pre-

viously discussed concepts (Agent -1). These
indices are crucial for determining word order and
maintaining coreference relationships. When index
errors occur, they disrupt the intended referential
structure, leading to incoherent DRS representa-
tions that fail to capture the correct coreference and
syntactic relationships, thus affecting the overall
interpretation and meaning of the text.

5.2.2 Text Generation Errors
In the GPG pipeline, the most significant errors that
disrupt the coherence and accuracy of generated
outputs are mentioned in Table 4 in Appendix B.
The major issues correspond to:
Grammatical Inaccuracies, that are evident in DRS
representations like “high.a.02 Value ? AttributeOf
+1 mountain.n.01 Name ‘Mount Kinabalu,”’ where
initial grammatical mistakes (e.g., “How high of
Mount Kinabalu?”) can lead to severe semantic
distortions in later stages.
Word Position Misalignment is another critical is-
sue, as seen in cases like “person.n.01 Name ?
found.v.02 Agent -1 Time +1 Theme +3 time.n.08
TPR now striptease.n.02 club.n.07 Name ‘Chippen-
dale’ Theme -1,” where incorrect word order (e.g.,
“Who founded the striptease club Chippendale?”)
complicates the reconstruction of logical relation-
ships in subsequent parsing.
Singular-Plural Discrepancies emerge when gener-
ating sentences such as “Jack’s book is interesting,”
which may incorrectly transform into “Jack’s books
are interesting,” affecting logical relationships and
leading to deeper semantic inconsistencies.
Lastly, Textual Representation Variations can cause
unexpected semantic divergences, as demonstrated
by changes like representing “100” as “a hundred,”
which may trigger parsing errors due to differing
interpretations of paraphrased expressions. These
errors highlight how linguistic nuances can propa-
gate through the pipeline, undermining the integrity
of the generated text.

5.3 Cross-Lingual Analysis

The cross-linguistic analysis highlights distinct er-
ror patterns in semantic processing influenced by
the structural characteristics of different languages.
In English, errors primarily arise from sense as-
signments and logical concept handling in parsing,
along with grammatical and word order issues in
generation tasks. Italian’s richer morphology leads
to complex challenges, particularly in thematic role
assignments during parsing and number agreement
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in generation. Urdu, characterized by word order
and complex morphology, exhibits the most se-
vere degradation across all categories, struggling to
maintain flexibility and linguistic agreements. The
analysis indicates that errors introduced at each
stage of the pipeline tend to amplify rather than
correct, resulting in a cyclical pattern of semantic
drift that degrades output quality. This suggests
a need for robust standalone models that can ef-
fectively handle complex semantic representations
without relying on multiple transformation stages,
thereby maintaining fidelity to language-specific
features.

5.4 Revealing the Pipeline Approach
The analysis highlights significant shortcomings of
the pipeline approach in semantic processing across
languages. Error amplification was a major issue,
with English maintaining stable parsing accuracy
(93.56% to 93.06%), while Italian and Urdu expe-
rienced more substantial drops (90.56% to 89.19%
for Italian and 79.77% to 76.42% for Urdu). Sim-
ilarly, in the GPG pipeline, English BLEU scores
decreased slightly, but Italian and Urdu showed
larger declines, reflecting greater error accumula-
tion in complex morphological contexts.

The linguistic complexity of Italian and Urdu
exacerbated the pipeline’s performance, as only
80.36% of Italian examples and a mere 49.88% of
Urdu examples maintained parsing stability, com-
pared to 86.13% for English. Furthermore, seman-
tic drift occurred as outputs diverged from their
intended meanings; parsing errors in sentences led
to cascading inaccuracies, with Urdu’s SMATCH
score dropping from 81.32% to 77.40% for longer
sentences.

The mismatch between surface forms and se-
mantic content was evident, with Italian and Urdu
experiencing significant declines in BLEU and ME-
TEOR scores during generation tasks. Additionally,
the pipeline struggled with linguistic ambiguity,
particularly in Urdu, where over 42.77% of exam-
ples exhibited performance declines due to poly-
semy. Finally, the inability to correct logical and
thematic role errors compounded inconsistencies,
with Urdu’s SMATCH score dropping from 79.77%
to 76.42%, underscoring critical weaknesses in
maintaining logical coherence throughout the se-
mantic processing chain.

Considering the question “When and Why does
the pipeline work?”, we provide here some specula-
tions related to Example 3 of Table 4. We note that

the singular/plural feature is not explicitly denoted
in the DRS, but it is only implicitly represented
by the name “Jack”. Moreover, we note that the
only difference between the original input and the
Gen-Pars output is the presence of the thematic
role USER in contrast to CREATOR. Searching in the
training set we found that the USER role has 729 in-
stances while CREATOR has 220 instances. We can
speculate that the standalone generator is not able
to account for the standard singular form related
to “Jack” since its original role, that is CREATOR,
is not frequent in the training set. In contrast, the
Gen-Pars-Gen system is able to realize the singular
form of the verb since it has a more frequent seman-
tic role, that is USER. In other words, we speculate
that the role of the pipeline is to “correct” the input
toward a more standard form, that is to transform
the original input into a form closer to the instances
that are in the training set.

6 Conclusion

We investigated the reversible nature of semantic
parsing and text generation through DRS, leverag-
ing pipeline approaches across Urdu, Italian, and
English. The primary objective was to assess the
impact of two distinct pipeline configurations (PGP,
GPG) on error propagation or mitigation with-
out additional model training. By employing pre-
trained language models, we explored how these
reversible processes influence the performance of
both parsing and generation tasks, providing valu-
able insights into cross-linguistic error dynamics.
The key findings demonstrate that, while the re-
versible pipeline approach offers the potential for
correcting errors, it more frequently leads to error
amplification, particularly in languages with com-
plex morphology and syntactic structures, such as
Urdu and Italian. English showed the most stabil-
ity, with only slight performance drops in parsing
and generation tasks. In contrast, Urdu and Italian
were more prone to error amplifications, as errors
introduced in one stage of the pipeline tended to
grow in later stages. Through a detailed analysis
of error patterns across different linguistic dimen-
sions, we provide an in-depth understanding of
how specific language characteristics influence er-
ror propagation. We revealed that the reversible
nature of DRS-based pipelines, while theoretically
promising, is limited in practical effectiveness due
to the compounding of errors in complex sentence
structures and morphologically rich languages.
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Limitations: The potential of our PGP and GPG
pipelines to exploit the task reversibility of DRS
offers opportunities for effective error dynamics,
whether through propagation or mitigation. How-
ever, the predominance of error propagation over
error mitigation is attributed to the dependency
of these pipeline approaches on pre-trained lan-
guage models. In our experimental implementa-
tion, we utilized the best-performing models with
state-of-the-art results for the languages involved.
Yet, the data examples used to train the English
DRS processing models vastly outnumbered those
for Italian and Urdu, posing a challenge in terms
of model generalization and robustness capabili-
ties. Furthermore, the limitations of traditional
evaluation metrics, such as SMATCH (which only
considers structural overlap) and BLEU and ME-
TEOR (which are based on n-gram overlap), further
complicate the assessment of these results. In our
analysis, we resorted to human evaluation, which
is computationally expensive and time-consuming.
Additionally, our analysis has highlighted the lin-
guistic imbalance across the various DRS variants,
which also poses a limitation to the fair evaluation
of the models. These findings suggest the need
for a more balanced dataset to train models that
can overcome these limitations and deliver the best
possible results.
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A Analyzing Error Dynamics for
Semantic Parsing

Table 3 lists error dynamics regarding the PGP
pipeline. In the first column, we have the Gold
Text which is parsed to get the corresponding DRS
representations i.e., Pars (DRS). This Pars (DRS)
is used to generate textual representation—Pars-
Gen (Text). Moreover, this textual representation is
passed to a semantic parser to generate Pars-Gen-
Pars (DRS) that is used to analyze the potential
error dynamics in the PGP processing.

B Analyzing Error Dynamics for Text
Generation

Table 4 lists error dynamics regarding the GPG
pipeline. In the first column, we have the Gold DRS
which is generated to get the corresponding textual
representations of the DRS i.e., Gen (DRS). This
text is parsed to extract its logical representation—
DRS equivalence of the generated text which is
passed to a generator to analyze the potential error
dynamics in the GPG processing.

C Linguistic Distributional Imbalance in
the Test Set

C.1 Impact of Sentence Length

To analyze the impact of sentence length on
pipeline performance, we categorized sentences
into three classes based on token count: short (0-4
tokens), medium (5-8 tokens), and long (9+ to-
kens). For token classification, we have adopted a
rule-based custom tokenization strategy to split the
sentences. Our analysis reveals significant distri-
butional disparities between training and test sets
across all three languages, which partially explains
the suboptimal performance of our pipeline ap-
proaches. Table 5 shows the sentence splits cor-
responding to different sentence lengths based on
tokens/words per sentence.

In English, while the training data shows a nat-
ural distribution skewed towards longer sentences
(51.72% long, 44.48% medium, 3.81% short), the
test set exhibits a markedly different distribution
with a strong bias towards medium-length sen-
tences (69.70%) and notably higher representa-
tion of short sentences (14.75%). This distribu-
tional mismatch appears to impact pipeline effec-
tiveness, as evidenced by consistent performance
degradation across all metrics and length categories.
The impact is particularly pronounced in short sen-
tences, where the SMATCH score drops from 90.89
to 89.69, suggesting that the pipeline struggles with
concise expressions where each token carries sig-
nificant semantic weight.

Italian displays an even more pronounced distri-
butional shift between training and test sets. The
test data is heavily concentrated in the medium-
length category (70.27%) with a notable overrepre-
sentation of short sentences (25.77%) compared to
training. This imbalance appears to particularly af-
fect the pipeline’s performance on long sentences,
where we observe the most substantial degrada-
tion across metrics (e.g., BLEU score drops from
47.98 to 41.68). The scarcity of long sentences in
the test set (3.96%) compared to training (25.01%)
suggests that the model may not have developed
robust handling of complex, lengthy expressions.

Urdu presents the most concerning performance
degradation among the three languages, with sub-
stantial drops across all metrics and length cate-
gories. The medium-length sentences, despite be-
ing the most represented in both training (68.12%)
and test (66.78%) sets, show a significant perfor-
mance decline in pipeline processing (SMATCH
drops from 81.32 to 77.40). This suggests that
beyond distributional mismatches, structural char-
acteristics of Urdu, such as its SOV word order and
complex morphology, may be amplifying errors
through the pipeline stages.

A cross-linguistic analysis reveals that medium-
length sentences consistently achieve the best base-
line performance across all three languages, but
also suffer from notable degradation in pipeline
processing. This pattern suggests that while these
sentences contain enough information for robust
semantic parsing, the pipeline’s sequential nature
introduces compounding errors that overwhelm
any potential error correction benefits. The perfor-
mance degradation is most pronounced in metrics
that evaluate structural similarity and semantic ac-
curacy (SMATCH, METEOR) rather than surface-
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Gold Text Pars (DRS) Pars-Gen
(Text)

Pars-Gen-Pars (DRS) Gold DRS

Let’s fly a kite. time.n.08 TSU now person.n.01 EQU speaker
fly.v.01 Time -2 Agent -1 Theme +1 kite.n.03

Let’s fly kites. time.n.08 TSU now person.n.01 EQU speaker
fly.v.01 Quantity + Time -2 Agent -1 Theme
+1 kite.n.03

time.n.08 TSU now person.n.01 EQU speaker
fly.v.05 Time -2 Agent -1 Theme +1 kite.n.03

Is your father
Spanish?

person.n.01 EQU hearer person.n.01 Role +1
father.n.01 Of -2 be.v.03 Theme -2 Source +1
country.n.02 Name “spain”

Your father is
Spanish.

person.n.01 EQU hearer person.n.01 Role +1
father.n.01 Of -2 time.n.08 EQU now be.v.03
Theme -3 Time -1 Source +1 country.n.02
Name “spain”

time.n.08 EQU now person.n.01 EQU hearer
person.n.01 Role +1 father.n.01 Of -2 be.v.03
Time -4 Theme -2 Source +1 country.n.02
Name “spain”

I caught a fish! person.n.01 EQU speaker catch.v.08 Recipi-
ent -1 Time +1 Theme +2 time.n.08 TPR now
fish.n.01

I myself caught
a fish.

person.n.01 EQU speaker catch.v.08 Recip-
ient Experiencer Of -1 Time +1 Theme +2
time.n.08 TPR now fish.n.01

person.n.01 EQU speaker catch.v.08 Agent
-1 Time +1 Theme +2 time.n.08 TPR now
fish.n.01

Mayuko de-
signed a dress
for herself.

female.n.02 Name “Mayuko” design.v.03
Agent -1 Time +1 Result +2 dress.n.01 Ben-
eficiary +1 time.n.08 TPR now female.n.02
ANA -4

Mayuko de-
signed this
dress on time
for herself.

female.n.02 Name “Mayuko” design.v.03
Agent -1 Time +1 Result +2 Time +2 Ben-
eficiary +1 time.n.08 TPR now dress.n.01 fe-
male.n.02 ANA -4

female.n.02 Name “Mayuko” design.v.03
Agent -1 Time +1 Result +2 Beneficiary +3
time.n.08 TPR now dress.n.01 female.n.02
ANA -4

Table 3: Analyzing error patterns through the lens of semantic parsing.

Gold DRS Gen (Text) Gen-Pars (DRS) Gen-Pars-Gen (Text) Gold Text
high.a.02 Value ? AttributeOf +1 moun-
tain.n.01 Name “Mount Kinabalu”

How high of Mount Kin-
abalu?

high.a.02 Time +1 AttributeOf +2 time.n.08
EQU now mountain.n.01 Name “Mount Kina-
balu”

High is Mount Kinabalu. How high is Mount Kin-
abalu?

person.n.01 Name ? found.v.02 Agent -
1 Time +1 Theme +3 time.n.08 TPR now
striptease.n.02 club.n.07 Name “Chippendale”
Theme -1

Who founded the
striptease club Chippen-
dale?

person.n.01 Name ? found.v.01 Agent -
1 Time +1 Theme +3 time.n.08 TPR now
striptease.n.01 club.n.06 Name “Chippendale”
Theme -1 club.n.06 EQU -1

Who found the striptease
club Chippendale club?

Who founded the Chip-
pendale striptease club?

male.n.02 Name “Jack” book.n.01 Creator -1
time.n.08 EQU now interesting.a.01 Attribu-
teOf -2 Time -1

Jack’s books are interest-
ing.

male.n.02 Name “Jack” book.n.01 User -1
time.n.08 EQU now interesting.a.01 Attribu-
teOf -2 Time -1

Jack his book is interest-
ing.

Jack’s book is interest-
ing.

entity.n.01 EQU ? be.v.06 Theme -1 Co-
Theme +1 square_root.n.01 Of +1 num-
ber.n.02 EQU 100

What is the square root
of a hundred?

entity.n.01 EQU ? be.v.02 Co-Theme -1
Time +1 Theme +2 time.n.08 EQU now
square_root.n.01 PartOf +1 entity.n.01 Quan-
tity +1 quantity.n.01 EQU 100

What is the square root
value of the number
100?

What’s the square root
of 100?

Table 4: Analyzing error patterns through the lens of text generation.

Lang. Data Type Total Ex. Sentence Splits (words/tokens)
Short (%) (0–4) Medium (%) (5–8) Long (%) (9–)

English Train 152788 3.81 44.48 51.72
Test 1132 14.75 69.70 15.55

Italian Train 5061 13.50 61.49 25.01
Test 555 25.77 70.27 3.96

Urdu Train 9057 13.07 68.12 18.80
Test 900 18.33 66.78 14.89

Table 5: Sentence length distribution by language and data type.

level similarity (BLEU), indicating that the pipeline
is particularly vulnerable to semantic drift during
multiple transformation steps.

These findings suggest that the underperfor-
mance of pipeline stems from a combination of
factors: (1) distributional mismatches between
training and test sets across sentence lengths, (2)
language-specific structural characteristics that am-
plify errors through multiple transformations, and
(3) the inherent challenge of maintaining seman-
tic consistency through sequential processing steps.
The consistent degradation across all metrics and
languages indicates that our current pipeline ar-
chitecture may need fundamental modifications to
achieve effective error mitigation. Table 6 lists mul-
tilingual results with the utilization of the impact
of sentence length on the performance of pipeline
approaches.

C.2 Performance Impact on Sentence Types

A systematic analysis of sentence type distributions
reveals significant disparities between training and
test sets across English, Italian, and Urdu. This
imbalance manifests distinctly in each language,
affecting the pipeline’s error mitigation capabilities
in different ways. Table 7 lists 4 different types of
sentences present in the English, Italian, and Urdu
data examples. We have used spaCy to extract these
sentence types from the dataset.

In English, the training data is heavily domi-
nated by declarative sentences (86.76%), while the
test set shows a more balanced distribution with
declarative sentences comprising 61.31%. This
imbalance is further highlighted in interrogative
sentences, where the test set proportion (31.63%)
significantly exceeds the training representation
(8.91%). The impact of this disparity is evident
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Lang. Imp. Type (ex.) Pipeline SMATCH BLEU METEOR COMET ROUGE chrF BERT_Score
(F1)

EN

Short (167)
Without 90.89 71.04 84.13 95.47 – 82.25 98.46
With 89.69 68.17 83.04 94.43 – 80.50 98.06

Medium (789)
Without 94.85 71.89 88.66 96.34 – 85.85 98.65
With 94.47 70.29 87.78 95.99 – 84.77 98.52

Long (176)
Without 90.32 66.99 86.62 93.70 – 83.61 98.09
With 89.89 65.35 85.54 93.25 – 82.39 97.91

IT

Short (143)
Without 90.52 53.61 63.14 87.62 – 63.44 90.27
With 89.48 49.32 60.15 85.65 – 59.89 89.14

Medium (390)
Without 90.66 58.41 76.22 90.98 – 73.29 93.79
With 89.14 55.07 73.39 89.86 – 70.55 92.95

Long (22)
Without 89.22 47.98 71.58 87.02 – 69.23 92.90
With 88.21 41.68 65.73 83.56 – 61.56 90.91

UR

Short (165)
Without 79.14 52.17 49.20 – 56.90 49.60 87.43
With 76.46 44.86 40.93 – 49.17 41.59 85.34

Medium (601)
Without 81.32 57.38 55.29 – 60.99 52.97 88.87
With 77.40 51.35 48.97 – 55.49 47.20 87.07

Long (134)
Without 73.06 49.91 47.88 – 55.36 47.20 86.97
With 71.96 41.63 38.78 – 47.00 38.47 83.82

Table 6: Impact of sentence length on evaluation results with and without pipeline for EN, IT, and UR. Bold indicates
the better results.

Sentence Type EN IT UR
Train (%) Test (%) Train (%) Test (%) Train (%) Test (%)

Declarative 86.76 61.31 87.39 87.57 93.82 87.22
Exclamatory 2.26 6.27 1.90 2.52 0.71 3.00
Imperative 2.06 0.80 0.57 0.18 0.76 0.89

Interrogative 8.91 31.63 10.14 9.73 4.71 8.89

Table 7: Sentence structure type distribution in training and test sets (EN, IT, UR).

in the pipeline’s performance: declarative sen-
tences show performance degradation from base-
line SMATCH of 93.44% to 92.98% with the
pipeline. Interrogative sentences, despite their un-
derrepresentation in training, maintain relatively ro-
bust performance with a modest SMATCH decline
from 93.94% to 93.37%. Notably, exclamatory sen-
tences, though comprising only 2.26% of training
data, achieve the highest baseline SMATCH score
(94.97%) but still experience degradation through
the pipeline (94.23%).

Italian demonstrates a more stable distribution
of declarative sentences between training (87.39%)
and test (87.57%) sets, yet the pipeline still shows
consistent performance degradation. The baseline
SMATCH score for declarative sentences (90.91%)
drops to 89.45% with the pipeline approach. Inter-
rogative sentences, representing 10.14% of training
and 9.73% of test data, show a significant perfor-
mance decline across all metrics when processed
through the pipeline, with SMATCH dropping from

87.22% to 86.97% and more dramatic drops in
BLEU (53.41% to 44.15%) and METEOR (67.04%
to 60.41%). Exclamatory sentences, despite lim-
ited representation, show notable baseline perfor-
mance (91.92% SMATCH) but experience substan-
tial degradation through the pipeline (88.66%).

Urdu exhibits the most pronounced training-
test distribution stability for declarative sentences
(93.82% training, 87.22% test) but shows the most
severe pipeline performance degradation. Declara-
tive sentences suffer a significant SMATCH drop
from 79.72% to 76.25%. Interrogative sentences,
despite having lower representation in both train-
ing (4.71%) and test (8.89%) sets, achieve the
highest baseline performance among all Urdu sen-
tence types (83.90% SMATCH) but still deteriorate
with pipeline processing (81.02%). Imperative sen-
tences, with minimal representation in both sets,
show the most dramatic performance decline, with
SMATCH dropping from 72.06% to 62.25% and
substantial degradation across all other metrics.
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The analysis reveals a consistent pattern of
pipeline performance degradation across all three
languages, though with varying severity. English
shows the most resilient performance with rela-
tively modest degradation across sentence types.
Italian demonstrates moderate performance drops,
particularly pronounced in semantic metrics. Urdu
exhibits the most severe degradation, suggest-
ing that language-specific structural characteris-
tics may amplify the challenges posed by distribu-
tional imbalances. This cross-linguistic compar-
ison indicates that the pipeline’s error amplifica-
tion tendency is influenced both by training-test
distribution mismatches and by inherent linguistic
complexities specific to each language. Table 8
lists multilingual results with the utilization of the
impact of sentence types on the performance of
pipeline approaches.

C.3 Analysis based on Structural Complexity
The distribution analysis based on structural com-
plexity reveals significant imbalances across dif-
ferent sentence types in both training and test sets.
In the training data, simple sentences dominate
across all three languages, with English showing
the most balanced distribution (70.18% simple,
14.30% complex, 9.40% compound, and 6.12%
compound-complex). Italian and Urdu display
an even stronger bias toward simple sentences
(88.05% and 93.31% respectively), with minimal
representation of other structures. This imbalance
becomes even more pronounced in the test sets,
where simple sentences constitute approximately
over 94% of the data across all languages, and
compound-complex sentences are entirely absent.
We have used spaCy to classify sentences based
on structural complexity from the dataset. Table 9
shows the percentage-wise structural distribution
of sentences in the training and test sets for EN, IT,
and UR.

For English language performance, the results
present interesting variations across different sen-
tence types. In simple sentences, which com-
prise the majority of the test set (1079 exam-
ples), the non-pipeline approach generally outper-
forms, achieving higher scores across most metrics
(SMATCH: 93.79%, BLEU: 71.18%, METEOR:
87.63%). However, the pipeline approach shows
promising results in complex sentences, marginally
outperforming in SMATCH (85.65% vs 85.45%),
though falling behind in other metrics. For com-
pound sentences, the performance between the

two approaches remains remarkably close, with
the pipeline approach achieving slight advantages
in BLEU (67.80% vs 67.58%) and BERT Score
(98.12% vs 98.11%).

Italian language results demonstrate distinct pat-
terns across different sentence structures. For sim-
ple sentences, which form the vast majority of the
test set (545 examples), the non-pipeline approach
consistently outperforms across all metrics. How-
ever, the most interesting results appear in com-
pound sentences, where despite the small sample
size (7 examples), the pipeline approach demon-
strates superior performance across multiple met-
rics, including BLEU (65.39% vs 64.71%), ME-
TEOR (82.15% vs 79.54%), COMET (91.78% vs
89.36%), and others. This suggests that the pipeline
approach might be particularly effective for han-
dling compound structures in Italian, though the
limited sample size warrants cautious interpreta-
tion.

Urdu language results present a clear pattern
favoring the non-pipeline approach across all sen-
tence types and metrics. In simple sentences (854
examples), the non-pipeline approach maintains
a significant lead across all metrics, with particu-
larly notable gaps in BLEU (55.81% vs 49.23%)
and METEOR (53.48% vs 46.42%). This pattern
continues and even amplifies in complex and com-
pound sentences, where the performance gaps be-
come more pronounced. The compound sentences
show the most dramatic differences, with the non-
pipeline approach outperforming by substantial
margins (e.g., BLEU: 48.83% vs 37.16%). All
results are listed in Table 10.

The overall analysis reveals several key insights
about structural complexity’s impact on perfor-
mance. Generally, performance tends to decrease
as structural complexity increases across all lan-
guages. The gap between pipeline and non-pipeline
approaches often widens with increased structural
complexity, though this pattern varies by language.
The results also highlight the challenge of evaluat-
ing performance on complex and compound struc-
tures due to limited sample sizes, particularly in
Italian and Urdu. While the non-pipeline approach
generally shows superior performance, the pipeline
approach demonstrates specific strengths in cer-
tain contexts, particularly in Italian compound sen-
tences and some aspects of English complex and
compound sentence processing. These findings
suggest that while the non-pipeline approach might
be preferable as a general solution, there could be
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Lang. Sent. Type (ex.) Pipeline SMATCH BLEU METEOR COMET ROUGE chrF BERT_Score
(F1)

EN

Declarative (694)
Without 93.44 72.75 89.58 95.93 – 86.10 98.73
With 92.98 70.75 88.66 95.39 – 84.87 98.54

Exclamatory (71)
Without 94.97 56.22 71.55 95.95 – 76.40 97.52
With 94.23 54.74 70.27 95.65 – 75.08 97.32

Imperative (9)
Without 76.09 77.40 95.38 96.28 – 87.25 99.33
With 76.83 74.04 94.49 96.11 – 84.97 99.35

Interrogative (358)
Without 93.94 70.39 86.98 95.53 – 84.41 98.34
With 93.37 68.98 86.06 95.14 – 83.34 98.17

IT

Declarative (486)
Without 90.91 57.48 73.76 90.00 – 70.96 93.22
With 89.45 54.31 71.08 88.54 – 67.99 92.25

Exclamatory (14)
Without 91.92 47.27 59.42 91.44 – 65.80 86.95
With 88.66 46.39 59.40 92.49 – 65.82 86.59

Imperative (1)
Without 83.33 18.99 32.25 71.11 – 18.63 79.09
With 91.66 18.99 32.25 71.11 – 18.63 79.09

Interrogative (54)
Without 87.22 53.41 67.04 89.53 – 69.53 91.32
With 86.97 44.15 60.41 87.67 – 63.77 90.19

UR

Declarative (785)
Without 79.72 54.93 52.56 – 59.18 50.46 88.27
With 76.25 48.11 45.11 – 52.64 43.60 86.17

Exclamatory (27)
Without 71.14 30.05 27.17 – 32.76 32.37 80.88
With 71.77 25.76 24.75 – 28.87 28.23 79.11

Imperative (8)
Without 72.06 31.84 33.72 – 34.63 37.64 79.16
With 62.25 22.63 24.82 – 25.83 29.68 77.35

Interrogative (80)
Without 83.90 69.90 68.72 – 73.04 69.45 92.28
With 81.02 64.96 63.80 – 68.13 64.48 90.55

Table 8: Impact of sentence type on evaluation results with and without pipeline for EN, IT, and UR. Bold indicates
the better results.

Structure Type EN IT UR
Train (%) Test (%) Train (%) Test (%) Train (%) Test (%)

Simple 70.18 95.32 88.05 98.20 93.31 94.89
Complex 14.30 1.94 5.77 0.54 2.49 2.22
Compound 9.40 2.74 4.64 1.26 4.09 2.89
Compound-complex 6.12 0.00 1.54 0.00 0.10 0.00

Table 9: Training and test set structure type percentages.

value in considering a hybrid approach that lever-
ages the strengths of both methods in specific lin-
guistic contexts.

This comprehensive analysis underscores the im-
portance of considering both structural complexity
and language-specific characteristics in developing
and evaluating natural language processing sys-
tems. The varying performance patterns across
different languages and sentence types suggest that
a one-size-fits-all approach might not be optimal
and that future developments might benefit from
language-specific optimizations and structural con-
siderations.

C.4 Polarity Impact on Performance

Polarity based distribution analysis reveals inter-
esting patterns across languages in both training

and test sets. English and Urdu show similar dis-
tributions with a strong bias toward affirmative
sentences, while Italian presents a notably differ-
ent pattern with a majority of negative sentences.
Specifically, in the training set, English (84.73%)
and Urdu (88.09%) heavily favor affirmative sen-
tences, while Italian shows a reverse trend with
60.80% negative sentences. This pattern persists in
the test sets, where English and Urdu maintain high
percentages of affirmative sentences (91.34% and
90.00% respectively), while Italian continues its
bias toward negative sentences (63.42%). We have
used TextBlob to extract these sentence types from
the dataset. Table 11 provides statistical numbers
for affirmative and negative sentence types for EN,
IT, and UR test sets.

For English language performance, the results
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Lang. Imp. Type (ex.) Pipeline SMATCH BLEU METEOR COMET ROUGE chrF BERT_Score
(F1)

EN

Simple (1079)
Without 93.79 71.18 87.63 95.89 – 85.03 98.55
With 93.26 69.44 86.76 95.48 – 83.92 98.38

Complex (22)
Without 85.45 67.32 89.98 93.75 – 84.01 98.11
With 85.65 59.96 83.99 89.50 – 77.50 97.19

Compound (31)
Without 91.15 67.58 87.45 94.41 – 83.27 98.11
With 91.11 67.80 87.45 94.39 – 83.22 98.12

IT

Simple (545)
Without 90.55 56.58 72.49 89.96 – 70.38 92.80
With 89.20 52.91 69.52 88.51 – 67.26 91.83

Complex (3)
Without 90.93 68.73 88.03 91.90 – 86.57 98.16
With 89.98 50.53 68.59 83.68 – 67.06 92.21

Compound (7)
Without 91.60 64.71 79.54 89.36 – 80.22 94.08
With 88.39 65.39 82.15 91.78 – 81.22 95.63

UR

Simple (854)
Without 79.95 55.81 53.48 – 59.81 51.82 88.49
With 76.71 49.23 46.42 – 53.54 45.24 86.47

Complex (20)
Without 73.23 42.42 39.91 – 49.14 41.37 83.58
With 67.08 41.65 39.26 – 46.58 40.33 82.86

Compound (26)
Without 78.87 48.83 49.62 – 54.06 48.55 86.34
With 73.95 37.16 36.70 – 42.53 36.26 82.39

Table 10: Impact of structural complexity on evaluation results with and without pipeline for EN, IT, and UR. Bold
indicates the better results.

Polarity Type EN IT UR
Train (%) Test (%) Train (%) Test (%) Train (%) Test (%)

Affirmative 84.73 91.34 39.20 36.58 88.09 90.00
Negative 15.27 8.66 60.80 63.42 11.91 10.00

Table 11: Training and test set polarity type percentages.

show consistently strong performance across both
affirmative and negative sentences, with the non-
pipeline approach maintaining a slight edge. With
affirmative sentences (1034 examples), the non-
pipeline approach achieves better scores across
all metrics (SMATCH: 93.56%, BLEU: 71.14%,
METEOR: 87.89%). The performance on nega-
tive sentences (98 examples) is remarkably simi-
lar, with the non-pipeline approach again outper-
forming (SMATCH: 93.53%, BLEU: 69.64%, ME-
TEOR: 85.32%). The minimal performance differ-
ence between affirmative and negative sentences
suggests that English processing is robust across
polarity types.

Italian language results present an interesting
case given its unique distribution favoring nega-
tive sentences. For affirmative sentences (203 ex-
amples), the non-pipeline approach shows strong
performance (SMATCH: 90.18%, BLEU: 60.85%,
METEOR: 76.15%). The performance on nega-
tive sentences (352 examples), which constitute the
majority, remains strong with the non-pipeline ap-
proach (SMATCH: 90.78%, BLEU: 54.39%, ME-

TEOR: 70.66%). Notably, while the pipeline ap-
proach consistently trails behind, the performance
gap remains relatively stable across both polarities,
suggesting consistent handling of both sentence
types.

Urdu language results reveal an interesting pat-
tern where negative sentences, despite being the
minority (90 examples), actually show slightly bet-
ter performance than affirmative ones. The non-
pipeline approach achieves higher SMATCH scores
on negative sentences (82.45% vs 79.47% for affir-
mative), though other metrics remain comparable.
This suggests that the processing of negative sen-
tences in Urdu might be more straightforward than
initially expected. The pipeline approach main-
tains the same pattern but with lower overall scores,
showing larger performance gaps compared to the
non-pipeline approach. Table 12 provides results
for affirmative and negative sentence types with
and without pipeline for EN, IT, and UR test sets.

The analysis reveals several key insights about
polarity’s impact on performance. First, the sys-
tems generally handle both polarities well, with
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Lang. Imp. Type (ex.) Pipeline SMATCH BLEU METEOR COMET ROUGE chrF BERT_Score
(F1)

EN
Affirmative (1034)

Without 93.56 71.14 87.89 95.78 – 85.14 98.53
With 93.07 69.37 86.88 95.32 – 83.98 98.36

Negative (98)
Without 93.53 69.64 85.32 96.09 – 83.14 98.61
With 92.86 67.58 85.16 95.52 – 81.58 98.30

IT
Affirmative (203)

Without 90.18 60.85 76.15 92.15 – 74.94 93.77
With 89.14 57.98 73.59 90.94 – 72.08 92.77

Negative (352)
Without 90.78 54.39 70.66 88.69 – 68.09 92.32
With 89.22 50.22 67.42 87.13 – 64.77 91.37

UR
Affirmative (810)

Without 79.47 55.36 53.23 – 59.51 51.59 88.28
With 76.25 48.47 45.92 – 52.89 44.86 86.20

Negative (90)
Without 82.45 54.85 51.65 – 58.46 50.59 88.65
With 77.92 50.85 46.48 – 54.66 44.93 86.89

Table 12: Impact of sentence polarity (affirmative and negative) on evaluation results with and without pipeline for
EN, IT, and UR. Bold indicates the better results.

relatively small performance variations between
affirmative and negative sentences within each lan-
guage. Second, the non-pipeline approach consis-
tently outperforms across all languages and polari-
ties, suggesting its robustness in handling different
sentence types. Third, the unique distribution in
Italian, with its preference for negative sentences,
doesn’t seem to negatively impact performance, in-
dicating that the systems have adequately adapted
to this linguistic characteristic.

These findings carry important implications for
system development and optimization. The con-
sistent performance across polarities suggests that
current approaches are well-balanced in handling
both affirmative and negative constructions. How-
ever, the persistent advantage of the non-pipeline
approach indicates that maintaining semantic co-
herence through unified processing might be par-
ticularly important for preserving meaning across
different polarity types. The results also highlight
the importance of considering language-specific
characteristics in system development, as demon-
strated by the successful handling of Italian’s
negative-heavy distribution and Urdu’s superior
performance on negative sentences despite their
minority status in the training data.

C.5 Analyzing the Impact of Sentence Voices

The distribution analysis based on sentence voices
shows a strong bias toward active voice across all
three languages in both training and test sets. In the
training data, the distribution is remarkably sim-
ilar across languages, with active voice dominat-
ing at 90.58% for English, 92.06% for Italian, and
92.01% for Urdu. This pattern becomes even more
pronounced in the test sets, where active voice sen-

tences increase to 93.37%, 94.05%, and 93.78%
respectively. The consistency of this distribution
across languages suggests a universal preference
for active voice constructions in natural language.
We have used spaCy to classify these sentences
based on the voice types from the dataset. Table 13
presents active and passive voice examples in train-
ing and test sets of EN, IT, and UR datasets.

English language results reveal some fasci-
nating patterns in the handling of voice types.
For active voice sentences (1057 examples), the
non-pipeline approach demonstrates superior per-
formance across all metrics (SMATCH: 93.57%,
BLEU: 70.33%, METEOR: 87.36%). However, the
most interesting findings emerge in passive voice
sentences (75 examples), where we see a mixed
pattern of success. The pipeline approach achieves
a higher SMATCH score (94.88% vs 93.32%),
marking one of the few instances where it outper-
forms the non-pipeline approach. Despite this, the
non-pipeline approach maintains higher scores in
other metrics for passive constructions, with no-
tably higher BLEU (80.44% vs 78.21%) and ME-
TEOR (92.00% vs 90.36%) scores. Interestingly,
both approaches achieve better scores on several
metrics for passive sentences compared to active
ones, suggesting that passive constructions, though
less frequent, might be more straightforward to
process.

Italian language performance shows a clear
preference for the non-pipeline approach across
both voice types. With active voice sentences
(522 examples), the non-pipeline approach con-
sistently outperforms (SMATCH: 90.46%, BLEU:
57.34%, METEOR: 73.07%). For passive voice
sentences (33 examples), despite the small sam-
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Voice Type EN IT UR
Train (%) Test (%) Train (%) Test (%) Train (%) Test (%)

Active 90.58 93.37 92.06 94.05 92.01 93.78
Passive 9.42 6.63 7.94 5.95 7.99 6.22

Table 13: Training and test set voice type percentages.

Lang. Imp. Type (ex.) Pipeline SMATCH BLEU METEOR COMET ROUGE chrF BERT_Score
(F1)

EN
Active (1057)

Without 93.57 70.33 87.36 95.81 – 84.65 98.51
With 92.93 68.57 86.47 95.31 – 83.48 98.32

Passive (75)
Without 93.32 80.44 92.00 95.75 – 89.40 98.93
With 94.88 78.21 90.36 95.64 – 87.84 98.84

IT
Active (522)

Without 90.46 57.34 73.07 90.15 – 70.91 92.89
With 89.11 53.72 70.11 88.66 – 67.75 91.93

Passive (33)
Without 92.19 47.55 66.23 86.94 – 65.66 92.16
With 90.60 42.63 62.83 86.32 – 62.45 91.04

UR
Active (844)

Without 79.85 55.51 53.40 – 59.64 51.64 88.31
With 76.44 48.97 46.33 – 53.38 45.08 86.31

Passive (56)
Without 78.54 52.31 48.04 – 55.83 49.31 88.56
With 76.06 44.77 40.67 – 48.31 41.66 85.77

Table 14: Impact of sentence voice (active/passive) on evaluation results with and without pipeline for EN, IT, and
UR. Bold indicates the better results.

ple size, the non-pipeline approach maintains its
advantage with higher scores across all metrics
(SMATCH: 92.19%, BLEU: 47.55%, METEOR:
66.23%). Notable is the fact that while SMATCH
scores are actually higher for passive sentences,
other metrics show lower performance compared to
active voice, suggesting that while semantic preser-
vation might be easier in passive constructions, gen-
erating natural language output becomes more chal-
lenging.

Urdu language results demonstrate a consistent
pattern favoring the non-pipeline approach, but
with some interesting nuances between active and
passive voice handling. For active voice sentences
(844 examples), the non-pipeline approach shows
strong performance (SMATCH: 79.85%, BLEU:
55.51%, METEOR: 53.40%). In passive voice
sentences (56 examples), while the non-pipeline
approach still outperforms, there’s a slight decline
in performance across most metrics (SMATCH:
78.54%, BLEU: 52.31%, METEOR: 48.04%).
This suggests that Urdu might find passive con-
structions more challenging to process compared
to active ones, unlike the pattern seen in English
and Italian. All evaluation results are presented in
Table 14.

Several key insights emerge from this analy-
sis about the impact of voice on processing per-

formance. First, the high proportion of active
voice sentences in training data doesn’t necessar-
ily translate to better performance on active con-
structions — in fact, both English and Italian show
higher SMATCH scores for passive voice sentences.
Second, the pipeline approach shows particular
promise in handling English passive constructions,
achieving its most notable success in this category.
Third, the impact of voice on performance varies
significantly by language, with Urdu showing a
different pattern from English and Italian.

These findings have important implications for
system development and optimization. The suc-
cessful handling of passive voice despite its lower
representation in training data suggests that current
approaches are robust in managing syntactic vari-
ations. However, the varying patterns across lan-
guages indicate that voice handling might benefit
from language-specific optimizations. The superior
performance of the pipeline approach on English
passive constructions also suggests that decompos-
ing complex syntactic transformations might be
beneficial in specific linguistic contexts. Future
developments might consider leveraging these in-
sights to create more nuanced, language-aware ap-
proaches to handling voice variations.
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