@inproceedings{rowe-etal-2025-limitations,
title = "Limitations of Religious Data and the Importance of the Target Domain: Towards Machine Translation for {G}uinea-{B}issau Creole",
author = "Rowe, Jacqueline and
Gow-Smith, Edward and
Hepple, Mark",
editor = "Ojha, Atul Kr. and
Liu, Chao-hong and
Vylomova, Ekaterina and
Pirinen, Flammie and
Washington, Jonathan and
Oco, Nathaniel and
Zhao, Xiaobing",
booktitle = "Proceedings of the Eighth Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2025)",
month = may,
year = "2025",
address = "Albuquerque, New Mexico, U.S.A.",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.loresmt-1.17/",
doi = "10.18653/v1/2025.loresmt-1.17",
pages = "183--200",
ISBN = "979-8-89176-230-5",
abstract = "We introduce a new dataset for machine translation of Guinea-Bissau Creole (Kiriol), comprising around 40 thousand parallel sentences to English and Portuguese. This dataset is made up of predominantly religious data (from the Bible and texts from the Jehovah{'}s Witnesses), but also a small amount of general domain data (from a dictionary). This mirrors the typical resource availability of many low resource languages. We train a number of transformer-based models to investigate how to improve domain transfer from religious data to a more general domain. We find that adding even 300 sentences from the target domain when training substantially improves the translation performance, highlighting the importance and need for data collection for low-resource languages, even on a small-scale. We additionally find that Portuguese-to-Kiriol translation models perform better on average than other source and target language pairs, and investigate how this relates to the morphological complexity of the languages involved and the degree of lexical overlap between creoles and lexifiers. Overall, we hope our work will stimulate research into Kiriol and into how machine translation might better support creole languages in general."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rowe-etal-2025-limitations">
<titleInfo>
<title>Limitations of Religious Data and the Importance of the Target Domain: Towards Machine Translation for Guinea-Bissau Creole</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jacqueline</namePart>
<namePart type="family">Rowe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Edward</namePart>
<namePart type="family">Gow-Smith</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Hepple</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chao-hong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Vylomova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Flammie</namePart>
<namePart type="family">Pirinen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Washington</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathaniel</namePart>
<namePart type="family">Oco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaobing</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico, U.S.A.</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-230-5</identifier>
</relatedItem>
<abstract>We introduce a new dataset for machine translation of Guinea-Bissau Creole (Kiriol), comprising around 40 thousand parallel sentences to English and Portuguese. This dataset is made up of predominantly religious data (from the Bible and texts from the Jehovah’s Witnesses), but also a small amount of general domain data (from a dictionary). This mirrors the typical resource availability of many low resource languages. We train a number of transformer-based models to investigate how to improve domain transfer from religious data to a more general domain. We find that adding even 300 sentences from the target domain when training substantially improves the translation performance, highlighting the importance and need for data collection for low-resource languages, even on a small-scale. We additionally find that Portuguese-to-Kiriol translation models perform better on average than other source and target language pairs, and investigate how this relates to the morphological complexity of the languages involved and the degree of lexical overlap between creoles and lexifiers. Overall, we hope our work will stimulate research into Kiriol and into how machine translation might better support creole languages in general.</abstract>
<identifier type="citekey">rowe-etal-2025-limitations</identifier>
<identifier type="doi">10.18653/v1/2025.loresmt-1.17</identifier>
<location>
<url>https://aclanthology.org/2025.loresmt-1.17/</url>
</location>
<part>
<date>2025-05</date>
<extent unit="page">
<start>183</start>
<end>200</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Limitations of Religious Data and the Importance of the Target Domain: Towards Machine Translation for Guinea-Bissau Creole
%A Rowe, Jacqueline
%A Gow-Smith, Edward
%A Hepple, Mark
%Y Ojha, Atul Kr.
%Y Liu, Chao-hong
%Y Vylomova, Ekaterina
%Y Pirinen, Flammie
%Y Washington, Jonathan
%Y Oco, Nathaniel
%Y Zhao, Xiaobing
%S Proceedings of the Eighth Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2025)
%D 2025
%8 May
%I Association for Computational Linguistics
%C Albuquerque, New Mexico, U.S.A.
%@ 979-8-89176-230-5
%F rowe-etal-2025-limitations
%X We introduce a new dataset for machine translation of Guinea-Bissau Creole (Kiriol), comprising around 40 thousand parallel sentences to English and Portuguese. This dataset is made up of predominantly religious data (from the Bible and texts from the Jehovah’s Witnesses), but also a small amount of general domain data (from a dictionary). This mirrors the typical resource availability of many low resource languages. We train a number of transformer-based models to investigate how to improve domain transfer from religious data to a more general domain. We find that adding even 300 sentences from the target domain when training substantially improves the translation performance, highlighting the importance and need for data collection for low-resource languages, even on a small-scale. We additionally find that Portuguese-to-Kiriol translation models perform better on average than other source and target language pairs, and investigate how this relates to the morphological complexity of the languages involved and the degree of lexical overlap between creoles and lexifiers. Overall, we hope our work will stimulate research into Kiriol and into how machine translation might better support creole languages in general.
%R 10.18653/v1/2025.loresmt-1.17
%U https://aclanthology.org/2025.loresmt-1.17/
%U https://doi.org/10.18653/v1/2025.loresmt-1.17
%P 183-200
Markdown (Informal)
[Limitations of Religious Data and the Importance of the Target Domain: Towards Machine Translation for Guinea-Bissau Creole](https://aclanthology.org/2025.loresmt-1.17/) (Rowe et al., LoResMT 2025)
ACL