@inproceedings{xiao-etal-2025-text,
title = "From Text to Multi-Modal: Advancing Low-Resource-Language Translation through Synthetic Data Generation and Cross-Modal Alignments",
author = "Xiao, Bushi and
Shen, Qian and
Wang, Daisy Zhe",
editor = "Ojha, Atul Kr. and
Liu, Chao-hong and
Vylomova, Ekaterina and
Pirinen, Flammie and
Washington, Jonathan and
Oco, Nathaniel and
Zhao, Xiaobing",
booktitle = "Proceedings of the Eighth Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2025)",
month = may,
year = "2025",
address = "Albuquerque, New Mexico, U.S.A.",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.loresmt-1.4/",
doi = "10.18653/v1/2025.loresmt-1.4",
pages = "24--35",
ISBN = "979-8-89176-230-5",
abstract = "In this study, we propose a novel paradigm for multi-modal low resource language dataset generation that eliminates dependency on existing parallel multi-modal datasets. Leveraging advances in large image-generation models, we introduce a systematic pipeline that transforms text-only parallel corpora into rich multi-modal translation datasets. We then validate the generated content through human evaluation. We design and implement a new MMT model framework suitable for our new generated dataset. The model contains a verification mechanism with a large language model to ensure consistency between visual content and textual translations. Experimental results across four African low-resource languages with less than 10k training corpus demonstrate significant improvements over NLLB baselines, with average gains of up to 9.8{\%} in BLEU score and 4.3{\%} in METEOR score. Our method shows particular effectiveness in correctly translating concrete objects and contextual elements, suggesting its potential for improving low-resource machine translation through visual grounding."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xiao-etal-2025-text">
<titleInfo>
<title>From Text to Multi-Modal: Advancing Low-Resource-Language Translation through Synthetic Data Generation and Cross-Modal Alignments</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bushi</namePart>
<namePart type="family">Xiao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qian</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daisy</namePart>
<namePart type="given">Zhe</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chao-hong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Vylomova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Flammie</namePart>
<namePart type="family">Pirinen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Washington</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathaniel</namePart>
<namePart type="family">Oco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaobing</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico, U.S.A.</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-230-5</identifier>
</relatedItem>
<abstract>In this study, we propose a novel paradigm for multi-modal low resource language dataset generation that eliminates dependency on existing parallel multi-modal datasets. Leveraging advances in large image-generation models, we introduce a systematic pipeline that transforms text-only parallel corpora into rich multi-modal translation datasets. We then validate the generated content through human evaluation. We design and implement a new MMT model framework suitable for our new generated dataset. The model contains a verification mechanism with a large language model to ensure consistency between visual content and textual translations. Experimental results across four African low-resource languages with less than 10k training corpus demonstrate significant improvements over NLLB baselines, with average gains of up to 9.8% in BLEU score and 4.3% in METEOR score. Our method shows particular effectiveness in correctly translating concrete objects and contextual elements, suggesting its potential for improving low-resource machine translation through visual grounding.</abstract>
<identifier type="citekey">xiao-etal-2025-text</identifier>
<identifier type="doi">10.18653/v1/2025.loresmt-1.4</identifier>
<location>
<url>https://aclanthology.org/2025.loresmt-1.4/</url>
</location>
<part>
<date>2025-05</date>
<extent unit="page">
<start>24</start>
<end>35</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T From Text to Multi-Modal: Advancing Low-Resource-Language Translation through Synthetic Data Generation and Cross-Modal Alignments
%A Xiao, Bushi
%A Shen, Qian
%A Wang, Daisy Zhe
%Y Ojha, Atul Kr.
%Y Liu, Chao-hong
%Y Vylomova, Ekaterina
%Y Pirinen, Flammie
%Y Washington, Jonathan
%Y Oco, Nathaniel
%Y Zhao, Xiaobing
%S Proceedings of the Eighth Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2025)
%D 2025
%8 May
%I Association for Computational Linguistics
%C Albuquerque, New Mexico, U.S.A.
%@ 979-8-89176-230-5
%F xiao-etal-2025-text
%X In this study, we propose a novel paradigm for multi-modal low resource language dataset generation that eliminates dependency on existing parallel multi-modal datasets. Leveraging advances in large image-generation models, we introduce a systematic pipeline that transforms text-only parallel corpora into rich multi-modal translation datasets. We then validate the generated content through human evaluation. We design and implement a new MMT model framework suitable for our new generated dataset. The model contains a verification mechanism with a large language model to ensure consistency between visual content and textual translations. Experimental results across four African low-resource languages with less than 10k training corpus demonstrate significant improvements over NLLB baselines, with average gains of up to 9.8% in BLEU score and 4.3% in METEOR score. Our method shows particular effectiveness in correctly translating concrete objects and contextual elements, suggesting its potential for improving low-resource machine translation through visual grounding.
%R 10.18653/v1/2025.loresmt-1.4
%U https://aclanthology.org/2025.loresmt-1.4/
%U https://doi.org/10.18653/v1/2025.loresmt-1.4
%P 24-35
Markdown (Informal)
[From Text to Multi-Modal: Advancing Low-Resource-Language Translation through Synthetic Data Generation and Cross-Modal Alignments](https://aclanthology.org/2025.loresmt-1.4/) (Xiao et al., LoResMT 2025)
ACL