@inproceedings{kopcan-etal-2025-brittle,
title = "The Brittle Compass: Navigating {LLM} Prompt Sensitivity in {S}lovak Migration Media Discourse",
author = "Kop{\v{c}}an, Jaroslav and
Harvan, Samuel and
Suppa, Marek",
editor = "Estevanell-Valladares, Ernesto Luis and
Picazo-Izquierdo, Alicia and
Ranasinghe, Tharindu and
Mikaberidze, Besik and
Ostermann, Simon and
Gurgurov, Daniil and
Mueller, Philipp and
Borg, Claudia and
{\v{S}}imko, Mari{\'a}n",
booktitle = "Proceedings of the First Workshop on Advancing NLP for Low-Resource Languages",
month = sep,
year = "2025",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2025.lowresnlp-1.10/",
pages = "88--101",
abstract = "In this work, we present a case study that explores various tasks centered around the topic of migration in Slovak, a low-resource language, such as topic relevance and geographical relevance classification, and migration source/destination location term extraction. Our results demonstrate that native (Slovak)prompts yield a modest, task-dependent gain, while large models show significant robustness to prompt variations compared to their smaller counterparts. Analysis reveals that instructions(system or task) emerge as the most critical prompt component, more so than the examples sections, with task-specific performance benefits being more pronounced than overall language effects."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kopcan-etal-2025-brittle">
<titleInfo>
<title>The Brittle Compass: Navigating LLM Prompt Sensitivity in Slovak Migration Media Discourse</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jaroslav</namePart>
<namePart type="family">Kopčan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samuel</namePart>
<namePart type="family">Harvan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marek</namePart>
<namePart type="family">Suppa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Advancing NLP for Low-Resource Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ernesto</namePart>
<namePart type="given">Luis</namePart>
<namePart type="family">Estevanell-Valladares</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alicia</namePart>
<namePart type="family">Picazo-Izquierdo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tharindu</namePart>
<namePart type="family">Ranasinghe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Besik</namePart>
<namePart type="family">Mikaberidze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Ostermann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniil</namePart>
<namePart type="family">Gurgurov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Mueller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claudia</namePart>
<namePart type="family">Borg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marián</namePart>
<namePart type="family">Šimko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd., Shoumen, Bulgaria</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this work, we present a case study that explores various tasks centered around the topic of migration in Slovak, a low-resource language, such as topic relevance and geographical relevance classification, and migration source/destination location term extraction. Our results demonstrate that native (Slovak)prompts yield a modest, task-dependent gain, while large models show significant robustness to prompt variations compared to their smaller counterparts. Analysis reveals that instructions(system or task) emerge as the most critical prompt component, more so than the examples sections, with task-specific performance benefits being more pronounced than overall language effects.</abstract>
<identifier type="citekey">kopcan-etal-2025-brittle</identifier>
<location>
<url>https://aclanthology.org/2025.lowresnlp-1.10/</url>
</location>
<part>
<date>2025-09</date>
<extent unit="page">
<start>88</start>
<end>101</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The Brittle Compass: Navigating LLM Prompt Sensitivity in Slovak Migration Media Discourse
%A Kopčan, Jaroslav
%A Harvan, Samuel
%A Suppa, Marek
%Y Estevanell-Valladares, Ernesto Luis
%Y Picazo-Izquierdo, Alicia
%Y Ranasinghe, Tharindu
%Y Mikaberidze, Besik
%Y Ostermann, Simon
%Y Gurgurov, Daniil
%Y Mueller, Philipp
%Y Borg, Claudia
%Y Šimko, Marián
%S Proceedings of the First Workshop on Advancing NLP for Low-Resource Languages
%D 2025
%8 September
%I INCOMA Ltd., Shoumen, Bulgaria
%C Varna, Bulgaria
%F kopcan-etal-2025-brittle
%X In this work, we present a case study that explores various tasks centered around the topic of migration in Slovak, a low-resource language, such as topic relevance and geographical relevance classification, and migration source/destination location term extraction. Our results demonstrate that native (Slovak)prompts yield a modest, task-dependent gain, while large models show significant robustness to prompt variations compared to their smaller counterparts. Analysis reveals that instructions(system or task) emerge as the most critical prompt component, more so than the examples sections, with task-specific performance benefits being more pronounced than overall language effects.
%U https://aclanthology.org/2025.lowresnlp-1.10/
%P 88-101
Markdown (Informal)
[The Brittle Compass: Navigating LLM Prompt Sensitivity in Slovak Migration Media Discourse](https://aclanthology.org/2025.lowresnlp-1.10/) (Kopčan et al., LowResNLP 2025)
ACL