Automatic Fact-checking in English and Telugu

Ravi Kiran Chikkala, Tatiana Anikina, Natalia Skachkova, Ivan Vykopal, Rodrigo Agerri, Josef van Genabith


Abstract
False information poses a significant global challenge, and manually verifying claims is a time-consuming and resource-intensive process. In this research paper, we experiment with different approaches to investigate the effectiveness of large language models (LLMs) in classifying factual claims by their veracity and generating justifications in English and Telugu. The key contributions of this work include the creation of a bilingual English-Telugu dataset and the benchmarking of different veracity classification approaches based on LLMs.
Anthology ID:
2025.lowresnlp-1.15
Volume:
Proceedings of the First Workshop on Advancing NLP for Low-Resource Languages
Month:
September
Year:
2025
Address:
Varna, Bulgaria
Editors:
Ernesto Luis Estevanell-Valladares, Alicia Picazo-Izquierdo, Tharindu Ranasinghe, Besik Mikaberidze, Simon Ostermann, Daniil Gurgurov, Philipp Mueller, Claudia Borg, Marián Šimko
Venues:
LowResNLP | WS
SIG:
Publisher:
INCOMA Ltd., Shoumen, Bulgaria
Note:
Pages:
140–151
Language:
URL:
https://aclanthology.org/2025.lowresnlp-1.15/
DOI:
Bibkey:
Cite (ACL):
Ravi Kiran Chikkala, Tatiana Anikina, Natalia Skachkova, Ivan Vykopal, Rodrigo Agerri, and Josef van Genabith. 2025. Automatic Fact-checking in English and Telugu. In Proceedings of the First Workshop on Advancing NLP for Low-Resource Languages, pages 140–151, Varna, Bulgaria. INCOMA Ltd., Shoumen, Bulgaria.
Cite (Informal):
Automatic Fact-checking in English and Telugu (Chikkala et al., LowResNLP 2025)
Copy Citation:
PDF:
https://aclanthology.org/2025.lowresnlp-1.15.pdf