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Abstract

False information poses a significant global
challenge, and manually verifying claims is
a time-consuming and resource-intensive pro-
cess. In this research paper, we experiment
with different approaches to investigate the ef-
fectiveness of large language models (LLMs) in
classifying factual claims by their veracity and
generating justifications in English and Telugu.
The key contributions of this work include the
creation of a bilingual English-Telugu dataset
and the benchmarking of different veracity clas-
sification approaches based on LLMs.

1 Introduction

In today’s technological world, claim verification
plays an important role (Zhang and Gao, 2023),
which aims to assess the veracity of claims as
“true” or “false” by validating them against trustwor-
thy sources (Panchendrarajan and Zubiaga, 2024).
This is necessary to combat false information, es-
pecially in multilingual countries such as India,
where false information can be propagated in mul-
tiple languages via translation technology (Quelle
et al., 2025). According to Pradeep et al. (2021),
claim verification involves three key steps: (1) re-
trieval of documents, (2) rationale selection, and
(3) label prediction. Currently, multilingual LLMs
significantly improve the claim verification process
(Schlichtkrull et al., 2023) compared to traditional
approaches such as manual fact-checking and sim-
ple machine learning classifiers. These language
models not only evaluate claims, but also provide
justifications, thereby offering a level of explana-
tion that traditional natural language processing
(NLP) approaches often lack (Dmonte et al., 2024).
To date, most of the work on claim verification in
fact-checking has been performed in English. In
this work, we address this shortcoming by creating

a new fact-checking dataset in Telugu, allowing for
large-scale experimentation in Telugu, a language
spoken by over 200 million people in the world
(Mallareddy, 2012). We achieve this by translating
our manually created English dataset into Telugu,
resulting in a bilingual English-Telugu dataset that
supports multilingual claim verification. Further-
more, LLLMs pose several limitations, such as ten-
dencies to hallucinate (Li et al., 2024), they exhibit
biases (Lin et al., 2025), smaller models may oper-
ate within limited context windows (Ratner et al.,
2023), and models may rely on knowledge that
may be outdated due to cutoff dates (Cheng et al.,
2024). In order to address these challenges, we use
Retrieval-Augmented Generation (RAG) (Lewis
et al., 2020) with different components, such as
prompt compression (Li et al., 2025), document
re-ranking (Hui et al., 2022) and query rewriting
(Ma et al., 2023).
We explore two research questions.

RQI: How well do LLMs classify domain-
specific claims in English versus Telugu?

RQ2: How do different models and ap-
proaches impact the quality of justifications
provided by LLMs in a English-Telugu multi-
lingual setting?

To address these research questions, we intro-
duce a new dataset named Preethi' that covers
both English and Telugu. Our experiments demon-
strate that RAG-based approach, achieves the high-
est claim verification scores in both English and
Telugu. For justification generation, RAG-based
approach obtains the best average score for En-
glish, while Simple Prompting achieves the highest
average score for Telugu.

'We make our complete dataset available at https:

//huggingface.co/datasets/Blue7Bird/
Preethi_dataset
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2 Related Work

2.1 Datasets Related to Indian Languages

Several datasets have been proposed for detecting
false information in the Indian context. Sharma
and Garg (2021b) introduce the Indian Fake News
Dataset (IFND), a monolingual English dataset
comprising 56,714 claims across various categories
relevant to the Indian context. Each claim in IFND
is labeled as “true” or “fake”. Similarly, Gupta and
Srikumar (2021) develop the X-Fact dataset, which
includes 31,189 claims and supports multiple In-
dian languages-though not Telugu. X-Fact has five
labels “true”, “mostly-true”, “partly-true”, “mostly-
false”, and “false”. Singhal et al. (2022) anno-
tate the Fact Drill dataset, which comprises 22,435
false claims in 13 Indian regional languages, in-
cluding fewer than 2,000 samples in Telugu. How-
ever, the dataset is not publicly available. Mittal
et al. (2023) present the X-CLAIM dataset, which
focuses on the identification of claims in multi-
lingual social media posts. X-CLAIM contains
7,000 real-world claims across five Indian regional
languages and English, but only 107 Telugu sam-
ples in its test set. Schlichtkrull et al. (2023) de-
velop the AVeriTeC dataset, comprising 4,568 real-
world claims in English. Each claim in AVeriTeC is
classified into one of the four labels: “supported”,
“refuted”, “not enough evidence” and “conflicting
evidence/cherry-picking”. Raja et al. (2023) create
the Dravidian Fake News Dataset (DFND), which
consists of 26,000 news articles in Telugu, Tamil,
Kannada, and Malayalam, annotated with binary
labels: “true” or “fake”. However, the DFND is
not open source, which poses challenges for repro-
ducibility and further research.

Although some of these datasets support claim
verification to varying degrees in Indian languages,
none, except AVeriTeC, include human-annotated
justifications and Question Answer (QA) pairs.
Yet AVeriTeC is not designed for the Indian con-
text. This highlights a research gap: the absence
of open source, human-annotated QA pairs, and
justification-rich resources for misinformation de-
tection in low-resource Indian languages such as
Telugu for the Indian context.
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2.2 RAG and Other Approaches with LLMs

Recent advances in claim verification have used
LLMs and RAG frameworks for claim verification
processes (Dmonte et al., 2024). Singal et al. (2024)
develop a RAG pipeline that extracts relevant ev-
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idence sentences from a knowledge base, which
are then passed into an LLLM for classification.
Yue et al. (2024) introduce a Retrieval-Augmented
Fact Verification framework through the synthe-
sis of contrasting arguments (RAFTS) to deter-
mine the veracity of the claim. Katranidis and
Barany (2024) propose Facts as a Function ap-
proach (FaaF), which is based on RAG, to eval-
uate the factual accuracy of the text generated by
LLMs. Vykopal et al. (2024) present a comprehen-
sive review of claim verification frameworks that
use LLMs, focusing on methods such as RAG and
fine-tuning. Our work is different from previous
research, as we implement a RAG pipeline that
enhances LLMs’ fact-checking capability, using
Automatic Scraping, integrating both foundational
and Advanced RAG components. We use Really
Simple Syndication (RSS) (Wikipedia contributors,
2024) feeds from reputable Indian news sources,
chosen for their longstanding credibility and wide
readership, to access up-to-date information to as-
sess new claims, as LLMs’ have knowledge cutoff
dates and may contain outdated information.

3 Preethi Dataset

Count of False vs True Claims by Category

Label
. false
m— True

729

CovID-19 Election Government Violence

Category

Misleading

Figure 1: Statistical information of the Preethi dataset
about true and false claims across five categories

In this research work, we have created the
Preethi dataset, which is based on the publicly avail-
able IFND (Sharma and Garg, 2021a). A claim, as
defined by Panchendrarajan and Zubiaga (2024), is
a statement that can be verified against evidence.
The IFND has several inconsistencies such as in-
complete claims, non-claims, questions, and entries
with multiple claims; these inconsistencies compro-
mise its overall quality as these claims cannot be
verified against evidence, see Table 1 for exam-
ples of inconsistent claims. We chose IFND be-
cause it is publicly available and its inconsistencies



highlight the need for a refined and higher-quality
resource, an opportunity we address through the
creation of Preethi dataset. We have manually an-
notated a dataset of 5,006 claims in English with
five topics from IFND, namely Covid-19, Election,
Government, Misleading, and Violence. Statisti-
cal details of the Preethi dataset are presented in
Figure 1. The Preethi dataset is not a strict sub-
set of IFND. Of the 2,568 true claims, 2,500 are
sourced from IFND. Among the 2,438 false claims,
2,435 are collected from fact-checking websites.
Following, Egelhofer and Lecheler (2019) we treat
partially true claims from fact-checking sources as
false, given their potential to spread misinforma-
tion similar to fully false claims. To reconstruct
complete claims from inconsistent IFND entries,
we use their original sources, identified via Google
Web Search (Google, 2024a) and, when necessary,
Microsoft Copilot (Microsoft, 2024).

Claim Inconsistency
This Video Is Not Of UP Police Chasing A......... Incomplete
Did Israel bomb Iranian nuclear facilities? Question
Drop, Don’t Extend It Non-claim

India’s Ministry of Culture has NOT announced
arelief....Fact Check: Chill. Iceland hasn’t de-
clared religions as weapons of mass destruction

Multiple claims

Table 1: Inconsistent claims in IFND

Inspired by the AVeriTeC, we provide additional
metadata for each claim, including supporting doc-
uments from the Web, the date of the claim, gold
justifications, and gold QA pairs. Gold justifi-
cations and gold QA pairs are created manually
based on the information in the supporting docu-
ments. To maintain the quality of the dataset, we
have involved three annotators who were trained
via detailed guidelines. We achieve a Cohen’s
Kappa agreement score of 80% for claim verac-
ity labels and 75% for boolean QA pairs, indicat-
ing substantial inter-annotator agreement. In ad-
dition, all abstractive and extractive QA pairs are
manually checked by annotators for correctness
and relevance by verifying them against support-
ing documents. To make our dataset available in
Telugu, we translate the English dataset using the
Google Translate API (Google, 2024b). To assess
the quality of the translated data, we perform a
back-translation from Telugu to English and com-
pare it with the original English version. This re-
sults in a BLEU (Papineni et al., 2002) score of
0.255 and a METEOR (Banerjee and Lavie, 2005)
score of 0.659, indicating moderate consistency be-
tween the original and back-translated texts. How-
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ever, the raw machine translations are not directly
used in our experiments. Instead, three native Tel-
ugu speakers have manually post-edited the ma-
chine translated output and removed the syntactic
and semantic errors. The final Telugu dataset is
used for experiments, ensuring high-quality transla-
tions and minimizing the potential bias introduced
by machine translation errors. We calculate post-
edits by comparing the initial machine-translated
Telugu dataset with the final manually annotated
Telugu dataset using Pyter (pyter developers, 2024)
to measure the translation error rate (TER) (Snover
et al., 20006). A total of 31,465 post-edits are made.
Table 2 compares Preethi dataset to the existing
benchmark datasets.

Dataset Justifications | Supports Telugu | QA Pairs
X-CLAIM X v X
AVeriTeC v X v
DEND X v X
IFND X X X
X-Fact X X X
Fact Drill X v X
Preethi (ours) v v v

Table 2: Comparison of Preethi dataset with benchmark
datasets.

3.1 QA Pairs

Each claim in our dataset has three manually cre-
ated QA pair types; see Table 3 for examples.
Boolean: Our dataset contains 4,010 indirect
and 996 direct boolean QA pairs. Direct QA pairs
rephrase the claim itself as a yes/no question, while
indirect QA pairs pose a related yes/no question
that helps verify the validity of the claim.
Abstractive: QA pairs are created by summariz-
ing the relevant information about the claim.
Extractive: QA pairs, in which the answer is a
direct snippet or a phrase taken word-for-word.

Claim
QA Type

Direct Boolean

The Eliffel Tower is in London
Question(Q) & Answer(A)

Q: Is the Eiffel Tower in London? A: No
Q: Is the Eiffel Tower in France? A: Yes

Indirect Boolean

Abstractive Q: What is the Eiffel Tower? A: a well known monument....

Q: Where is the Eiffel Tower? A: Paris, France.

Extractive

Table 3: Boolean, Abstractive and Extractive QA pairs

4 Methodology and Experiments

This section discusses different approaches that are
used in our experiments: /) Simple Prompting and
RAG approaches that include 2) Naive RAG; 3) Ad-
vanced RAG and 4) Automatic Scraping. In our
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Figure 2: RAG Approaches

experiments, we use gold justifications to evaluate
the justifications generated by LLMs and gold QA
pairs to assess the quality of QA pairs generated by
LLMs. For claim veracity evaluation, we use F1
score. In order to evaluate the justifications gener-
ated by LLMs, we use METEOR, ROUGE-L (R-L)
(Lin, 2004), ChrF (Popovié, 2015), BERTScore
(Zhang* et al., 2020) and BLEURT (Sellam et al.,
2020). We make our complete code > and addi-
tional details public.

4.1 Simple Prompting

In Simple Prompting, we use a zero-shot approach
(Wei et al., 2022), where the LLM relies solely
on its pre-trained knowledge and general language
understanding to classify only claims, operating
without any additional supporting documents. In
this approach the LLM is given a claim as input,
and it is tasked to classify a claim as “false” or
“true” and provide reasoning or justification for its
decision. Without such explanations, the classifica-
tion may appear arbitrary or unsupported. For the
experiments, we consider the Simple Prompting
approach as a baseline.

4.2 RAG Approaches

Since LLMs are not updated regularly and have a
fixed knowledge cut-off date, they may hallucinate.
To address this, we use RAG. In order to find sup-
porting documents for claims, we use the Cohere
c4ai-command-r7b-12-2024 (Cohere For Al, 2024)
model for English and Telugu. To handle the large
number of new claims that appear every day, we
use RSS feeds. These feeds are updated regularly
by different on-line news sources, providing up-to-

https://github.com/formallinguist/
Automatic-Fact—-Checking
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date information. To manage this data, we choose
the MongoDB (MongoDB Inc., 2024) database for
our experiments. It is a NoSQL database suitable
for unstructured data, making it ideal for storing
RSS feeds and supporting documents retrieved by
Cohere. We collect RSS feeds from reliable In-
dian news sources such as NDTV (NDTV, 2024)
for English and Eenadu (Eenadu, 2024) for Telugu.
Chroma (Chroma, 2024), a vector database, is used
to store documents using vector representations.

4.2.1 Naive RAG

In the Naive RAG approach, as shown in Figure
2 (excluding the steps highlighted in blue), the
process unfolds as follows:

Step 1: Cohere c4ai-command-r7b-12-2024
model is prompted to provide supporting docu-
ments for a given claim. These documents are
then stored in MongoDB.

Step 2: The MongoDB retriever, which uses
string matching, identifies, and retrieves documents
relevant to the claim. The retrieved documents
are processed through the LangChain text splitter
(LangChain, Inc., 2025), which divides documents
into smaller segments.

Step 3: These segments are converted to vec-
tor embeddings using multilingual E5 Text embed-
dings (Wang et al., 2024). These embeddings are
then stored in Chroma.

Step 5: Cosine similarity is used to compare
the embeddings of the claim with the documents
stored in Chroma. The top three documents with
the highest cosine similarity scores are retrieved
from Chroma and used as evidence for the LLM.

Step 6: Finally, the LLM analyzes the evidence
in the context of the claim and classifies the claim
as true or false, along with justifications for its
decision.

4.2.2 Advanced RAG

Advanced RAG is similar to Naive RAG but with
additional components such as query re-writing,
document re-ranking, and prompt compression. In
Figure 2 the additional components of Advanced
RAG are highlighted in blue.

Query Re-writing: For query re-writing, we
use the Cohere c4ai-command-r7b-12-2024 model,
which modifies the original claim to improve its
quality for better retrieval of documents. This in-
cludes correcting spelling errors, rephrasing, or
adding additional context to a claim for better un-
derstanding. See Table 4 for examples. According
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to Skitalinskaya and Wachsmuth (2023), the cri-
teria for re-writing a claim include maintaining
syntactic and semantic coherence, being grammat-
ically correct, and removing ambiguity. A good
claim is precise, includes relevant context, and is
not ambiguous. In our experiments, we observe
that 50 % - 60 % of claims undergo this process.
We calculate this using string matching. We have
manually verified 50 claims in English and Telugu
to check the quality of the re-written claims. We
observe that re-written claims in English are syn-
tactically and semantically coherent, while Telugu
re-written claims have grammatical errors.

Document Re-ranking: For document
re-ranking, we use bert-multilingual-passage-
reranking-msmarco (ambeRoad, 2022). It
calculates the relevance of each document with
respect to the claim and then sorts the documents
by the scores to determine the best matches. This
ensures the documents that are most relevant for
the claim are ranked higher for further processing.
Unlike cosine similarity in the Naive RAG
approach, which only compares vector proximity,
here, the CrossEncoder evaluates the relationship
between the claim and the document in context.
The top three re-ranked documents are considered
for further processing.

Prompt Compression: For prompt compres-
sion, we use the Cohere c4ai-command-r7b-12-
2024 model. This involves reducing the length of
a prompt while retaining its most important infor-
mation. This helps in scenarios where there is a
limited context window for an LLM.

4.2.3 Automatic Scraping

In Automatic Scraping, we extract content
from URL in the supporting documents of
the Preethi dataset using BeautifulSoup (BS4)
(Richardson). To overcome the limitation of
the context window of the LLMs, we use
a sentence-transformers/paraphrase-multilingual-
mpnet-base-v2 (Reimers and Gurevych, 2019).
This model identifies the most relevant sentences
from the supporting documents by comparing their
semantic similarity to the given claim. We retrieve
up to 3,000 characters of content that are most rele-
vant to the claim. This selected content is then used
as the context for the LLM and is referred to as the
refined context. This approach is repeatable with
new data if the claim and its URL are available.

4.3 Evaluation of QA pairs

In claim verification, asking good questions is cru-
cial (Schlichtkrull et al., 2023). To assess the qual-
ity of QA pairs generated by LL.Ms, we calculate
their similarity to gold-standard QA pairs. We
use an in-context learning approach (Dong et al.,
2024), where the gold QA pair serve as reference
to guide the LLM in generating boolean, abstrac-
tive, and extractive QA pairs in the desired for-
mat for a claim. For evaluation, we follow the
approach of Schlichtkrull et al. (2023), we first
compute METEOR scores and then apply the Hun-
garian algorithm (Kuhn, 1955) to identify the opti-
mal one-to-one matching between LLM-generated
and gold-standard QA pairs by maximizing ME-
TEOR scores. Table 7 provides English and Telugu
scores.

4.4 Experiments

We use the models listed in Table 5 for experiments.

Versions of models Parameters
Gemma-2 (Team, 2024) 9B
Llama-3 (AI@Meta, 2024) 70B
Llama-3.3 (Meta, 2024) 70B
Llama-3 (Meta, 2024) 8B
Mixtral (Jiang et al., 2024) 8x7B

Table 5: Models for experiments

We select models that are trained on publicly
available online data. All LLMs are instructed in
English, and we experiment with three different
prompt templates, selecting the best-performing
one for our experiments. To ensure consistency
of the results, each experiment is conducted three
times, with same temperature. We calculate vari-
ance across the three runs for both English and
Telugu using the F1 scores of the best-performing
models. For English, the Naive RAG exhibits the
highest variance, while the Advanced RAG shows
the lowest. For Telugu, Automatic Scraping results
in the highest variance, whereas the Naive RAG has
the lowest. Table 6 shows average scores of model
performance across English and Telugu datasets.
We use multiple evaluation metrics in our experi-
ments to gain a comprehensive understanding of
the models’ performance, as no single metric can
fully capture the quality of a model’s output for
justification generation.
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BPCL by first half of 2021-22 divestme
secretary

No. | Original Claim Re-written Claim

1 Jharkhand new hotspot of illicit opium culti- | The NCB reports significant opium cultivation in
vation: NCB Jharkhand, identifying it as a potential hotspot.

2 Govt confident of privatising Air India, | The Indian Government’s Divestment Strategy:

nt

Privatization of Air India and BPCL by 2022
and the Secretary’s Statement on Future Plans.

Table 4: Comparison of original and re-written claims

| Approach | F1 (Claim Verif.) ||

English Justification Generation Scores

Telugu Justification Generation Scores

Model | | En Te ||METEOR R-L ChrF BLEURT BERTScore|Avg-En| METEOR R-L ChrF BLEURT BERTScore | Avg-Te
SP  [80.16 4295 0.288  0.283 39.92  0.48 0.87 0464 || 0126 0.165 2534 045 0.72 0.343

Liamas.70p | NRAG [58.16 4077 0.267 0275 3851 047 0.86 0.451 0.140  0.163 23.94  0.44 0.71 0.339
A-RAG [6121 44.31 0.256 0259 4111  0.56 0.88 0473 || 0.134 0.174 26.08 0.48 0.72 0.354

AS  |86.14 8045 0.281  0.289 37.72 047 0.89 0.461 0.123  0.162 2470 045 0.72 0.340

SP  [75.07 70.68 0275 0275 3855 047 0.89 0459 || 0172 0229 3279 051 0.71 0.390

Liama33-708 | N'RAG |57.44 3886 0.286 0282 3541 043 0.87 0444 || 0106 0.123 27.04  0.40 0.72 0.324
A-RAG [59.38 41.76 0.259 0250 37.81  0.42 0.88 0437 || 0.135 0.174 28.29 043 0.72 0.348

AS |77.22  80.58 0.308 0.318 39.81  0.49 0.90 0482 || 0.163 0.196 31.84  0.50 0.73 0.381

SP  [5621 4845 0.294 0279 3985  0.50 0.89 0472 || 0.138 0.194 29.64 0.42 0.73 0.356

Llama-3-8B N-RAG |5241 47.29 0.266  0.280 37.59 045 0.86 0446 || 0.139  0.184 2821 041 0.72 0.347
‘ A-RAG [60.11 49.75 0.254  0.304 3841  0.49 0.89 0464 || 0.133 0203 29.61 0.44 0.72 0.358

AS  |70.83 50.77 0.288  0.291 38.64  0.47 0.87 0.461 0.124  0.164 2596 042 0.72 0.338

SP [5695 49.22 0.285 0.273 3894  0.49 0.88 0463 || 0.110 0.129 27.59  0.29 0.72 0.305

Mixtral-sx7p | NRAG |57.19 5124 0.293 0303 37.51 047 0.86 0460 || 0.153 0.172 2839 041 0.73 0.350
A-RAG [59.26 5549 0.280 0.293 38.66  0.51 0.89 0472 || 0.146 0213 2866 043 0.72 0.359

AS  |84.08 73.86 0.316  0.340 41.03  0.48 0.87 0483 || 0087 0.114 2327 028 0.70 0.283

SP |64.72 5741 0.208  0.283 31.89  0.46 0.87 0428 || 0.125 0.183 2666 043 0.73 0.347

Gemmaz-op | NRAG |6221 5239 0.197 0264 30.51 045 0.87 0417 || 0103 0.173 2841 043 0.72 0.342
A-RAG [63.81 50.77 0.180  0.283 34.74 049 0.90 0.440 || 0.094 0213 3049 046 0.72 0.358

AS  [83.23 78.05 0217 0277 3677 048 0.87 0442 || 0.114  0.152 24.68 042 0.72 0.331

Table 6: Scores across different metrics for English (En) and Telugu (Te). Approaches include Simple Prompting
(SP), Naive RAG (N-RAG), Advanced RAG (A-RAG), and Automatic Scraping (AS). The best results for each
metric and language are highlighted in bold, while the best scores per metric and language for each model are
underlined. ChrF scores are normalized (divided by 100) when computing average scores for English and Telugu.

Model En Te

Llama-3-70B 0.101 0.072
Llama-3.3-70B  0.140  0.090
Llama-3-8B 0.178 0.124
Mixtral-8x7B 0.208 0.089
Gemma-2-9B 0.126  0.079

Table 7: QA pairs Hungarian METEOR scores for En-
glish (En) and Telugu (Te). Best scores are highlighted
in bold

5 Results and Discussion

We analyze claim verification and justification gen-
eration results for English and Telugu to answer
RQ1 and RQ?2, and also analyze QA pair results.

5.1 Claim Verification

In order to answer RQ1, we examine the claim
verification results presented in Table 6.

5.1.1 English
Simple Prompting: Within the Simple Prompting

approach across models, Llama-3-70B achieves
the highest F1 score, likely due to its large size
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and English-focused training, enabling strong rea-
soning without external supporting documents. In
contrast, Llama-3-8B performs the worst, likely
due to its smaller size. Interestingly, Llama-3-70B
outperforms both Naive and Advanced RAG un-
der Simple Prompting, showing the largest perfor-
mance gap of 23.95 points of F1 score between the
best and worst performing models.

Automatic Scraping: We observe that all mod-
els obtain their highest F1 scores with this approach.
With Automatic Scraping Llama-3-70B has the
highest F1 score and Llama-3-8B has the lowest
F1 score. This suggests that Automatic Scraping
provides high-quality, relevant context that helps
LLMs verifying and classifying the claims. All
models perform better with Automatic Scraping
compared to Simple Prompting.

Naive RAG: Gemma-2-9B achieves the highest
F1 score and Llama-3-8B has the lowest F1 score.
We observe that the Naive RAG approach does not
improve the models’ performance with respect to
Simple Prompting except for Mixtral-8x7B. One
possible reason for the relatively low F1 scores



across models is that the Cohere model may not
retrieve suitable supporting documents, particularly
for claims related to the Indian context. This limita-
tion at the evidence retrieval stage can significantly
impact the quality of context available to the LLM,
thus reducing overall performance.

Advanced RAG: Gemma-2-9B achieves the
highest F1 score and Mixtral-8x7B shows the low-
est F1 score. We observe that models consistently
perform slightly better with Advanced RAG com-
pared to Naive RAG. This improvement may be at-
tributed to the additional components in Advanced
RAG that enhance the models’ overall performance.
However, results with the Simple Prompting ap-
proach remain superior except for Llama-3-8B and
Mixtral-8x7B. Notably, this approach results in the
smallest performance gap of 4.55 points in average
F1 score between the best and worst performing
models.

5.1.2 Telugu

Simple Prompting: Within the Simple Prompting
approach, Llama-3.3-70B obtains the highest F1
score, likely due to some knowledge of Telugu in its
pre-training data, as it was trained on open-source
web documents. In contrast, all other models have
low F1 scores. This could be due to the limited
presence of Telugu in their pre-training corpora.

Naive RAG: Gemma-2-9B has the highest F1
score and Llama-3.3-70B has the lowest F1 score.
The relatively low scores across models may be
attributed to the Cohere model’s limited ability to
retrieve relevant supporting documents for claims
in Telugu. Since Telugu is a low-resource language,
the amount and quality of content available in it
would be significantly lower compared to English.
In this approach, only Mixtral-8x7B performs bet-
ter than the models with Simple Prompting. This
approach has the lowest performance gap of 14.03
F1 points between the best and the worst perform-
ing models.

Advanced RAG: Mixtral-8x7B has the high-
est F1 score and Llama-3.3-70B has the lowest F1
score. The F1 scores across models suggest that the
Advanced RAG generally performs slightly better
than the Naive RAG for Telugu, with the excep-
tion of Gemma-2-9B. This exception may be due
to Gemma-2-9B not having received suitable docu-
ments as context. The modest improvements seen
with Advanced RAG can likely be attributed to its
additional components. However, F1 scores for
Telugu remain relatively low compared to those for

English. Among the evaluated models, Llama-3-
70B, Llama-3-8B, and Mixtral-8x7B outperform
Simple Prompting.

Automatic Scraping: Under this method, in
which the context is in English, Llama-3.3-70B
achieves the highest F1 score, demonstrating its
ability to transfer knowledge from English to Tel-
ugu. In comparison, the smaller Llama-3-8B
has the lowest F1 score. These results highlight
that LLMs perform significantly better in Tel-
ugu when provided with suitable supporting docu-
ments. Here, all models perform better than Simple
Prompting. The performance gap between the best
and the lowest performing model is 29.81 average
F1 score, which is highest using this technique.

Automatic scraping has the highest scores for
claim verification as it uses reliable supporting doc-
uments as context. To answer RQ1, our exper-
iments show that LLMs perform better at claim
verification in English compared to Telugu.

5.2 Justification Generation

As shown in Table 6, we compare the results of
justification generation score (JGS) for Telugu and
English to answer RQ2. JGS is an average of ME-
TEOR, R-L, ChrF, BLUERT and BERTScore. We
observe that for English and Telugu different mod-
els and approaches have high scores across differ-
ent metrics. However, for English, Mixtral-8x7B
with Automatic Scraping has the highest overall
average JGS. The best overall JGS in Telugu is at-
tained by Llama-3.3-70B using Simple Prompting.
Manual review of 100 justifications from various
methods reveals no clear link between claim verifi-
cation and JGS.

5.3 QA pairs

As shown in Table 7, Mixtral-8x7B achieves the
highest METEOR score for English, likely because
it is trained on predominantly English data. In con-
trast, Llama-3-8B, despite being a small model,
achieves the best METEOR score for Telugu. This
performance may result from its closer adherence
to the reference QA pairs, whereas larger mod-
els tend to “hallucinate” or be creative (Lin et al.,
2022), which negatively affects similarity scores .

6 Error Analysis

In this section, we present the qualitative and quan-
titative error analysis for English and Telugu.
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6.1 Qualitative Error Analysis

We manually analyze 100 samples from the best
performing models for each task: Llama-3-70B
(English) and Llama-3.3-70B (Telugu) for claim
verification; Mixtral-8x7B (English) and Llama-
3.3-70B (Telugu) for justification generation.

6.1.1 Claim Verification

Example 1 Bias Error

Model output : The indian air force conducted an air strike on a
jaish-e-mohammed training camp in balakot, pakistan, on february 26, 2019,
reportedly killing several terrorists.

Example 2 Hallucination Error
Model output : covishield, will be priced at around ¥200- %300 per dose, not
31,000.

Example 3 Retrieval Error

Claim: Congress mla calls kumaraswamy's absence at tipu jayanti celebrations
an insult to muslims.

Model output: the provided context discusses ramdas athawale's criticism of raj
thackeray, not yogesh sagar's protest against road closures for friday prayers.

Example 4 Translation error

Claim in Telugu: 8¥es So08 oo doh BRO 08100 44 FrgFes SoSHeB
ZB0BoTE, wots® 7 eEde &TO.

Claim in English: Defense Minister Rajnath Singh inaugurated 44 strategic
bridges built by BRO, out of which 7 are in Ladakh.

Model output Translation from Telugu: It is not Rajnath singh's brother, it is
defense minister Rajnath singh who inaugurated these 44 strategic bridges.

Figure 3: Different types of Errors

We have focused on identification of biases (Dev
et al., 2022), hallucinations (Li et al., 2024), re-
trieval, and translation errors. Biases are unfair pat-
terns in responses that occur when the model favors
certain views, stereotypes, or groups over others.
As shown in Example one in Figure 3, there is a po-
tential bias toward labeling individuals as terrorists.
Hallucinations occur when LLMs generate infor-
mation that is factually incorrect. In Example two
in Figure 3 the language model hallucinates about
the pricing of the Covishield vaccine. Retrieval
errors in RAG approaches refer to the failing of
the model to obtain relevant or sufficient contextual
knowledge to support accurate reasoning, leading
to incorrect or unsupported output. Example three
in Figure 3 shows that the retrieved documents
are not related to the claim about kumaraswamy
and tipu jayanti. Finally, translation errors are
uniquely observed when there is a language mis-
match in the claim or between claim and context -
for example, when there are acronyms in English
and the claim is in Telugu. In such scenarios, the
models attempt to translate the English acronyms
to Telugu as in Example four in Figure 3 where
it can be observed that BRO acronym which is in
English is translated to “brother” in Telugu.

Approach B H R o

SP 13.14% 4.81% - 1.92%
AS 491% 1.02% 3.85% 4.08%
N-RAG 12.12% 5.39% 13.54% 10.76%
A-RAG 11.98% 1.22% 16.75% 9.27%

Table 8: English errors with percentage (relative to 5006
claims). B: Biases, H: Hallucinations, R: Retrieval, O:
Other.

Approach B H R T o

SP 517%  10.71% - - 13.16%
AS 1.00% 2.46% - 0.26%  12.86%
N-RAG 8.79% 9.35% 1.62% 8.63%  20.59%
A-RAG 0.50% 8.25% 10.53% - 13.18%

Table 9: Telugu errors. B: Biases, H: Hallucinations, R:
Retrieval, T: Translation, O: Other.

6.2 Justification Generation

We manually evaluate generated 100 justifications
against the gold-standard justifications from differ-
ent approaches. We observe that Automatic Scrap-
ing enables LLMs to generate good-quality justifi-
cations in English and Telugu. Manual inspection
further reveals that the quality of text generation
is generally good for English across different mod-
els and approaches. However, outputs in Telugu
often exhibit syntactic and semantic errors, along
with instances of Tenglish (a mix of Telugu and En-
glish) script.

6.3 Quantitative Error Analysis

We use the mistral-saba-24B LLM (A, 2025)
as a judge, following an in-context learning ap-
proach.We manually select one misclassified claim
with its justification from each error type as a
demonstration for the judge. Misclassified claims
and their justifications are filtered and they are then
classified by the LLM into the predefined error
categories, with uncategorized errors labeled as
“Other.” Tables 8 and 9 report category-wise error
percentages. Manual verification of 50 errors per
language confirms accurate quantification.

7 Conclusion

In this project, we introduced a new English-Telugu
claim verification dataset with manually annotated
QA pairs and justifications. We used it to bench-
mark Simple Prompting and RAG approaches with
LLMs. Our results show that the models perform
better in English than in Telugu, highlighting chal-
lenges in claim verification and justification gener-
ation in Telugu.
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Limitations

The results of our experiments are based on a
dataset of 5,006 claims with only two labels from
five topics. Performance may vary with larger and
more diverse datasets. In India, claims occur in
multiple languages, but for this study, we work in
one language at a time. We need to explore differ-
ent prompt templates for Telugu and English, as
some templates perform better than others. Our
dataset consists only of textual claims, excluding
images and videos, which are also commonly as-
sociated with the spread of false claims. Although
we have relied on lexical and semantic similarity
metrics, we have not incorporated additional text
generation metrics to detect hallucinations. Our
evaluation relies exclusively on automatic metrics
such as R-L, METEOR, and BERTScore. While
these provide surface-level and semantic overlap,
they may not adequately capture the true quality
of either QA pairs or justifications. In particular,
justifications can often be expressed in many valid
ways that differ substantially from the reference,
leading to artificially low metric scores, while con-
versely, outputs that are lexically or semantically
similar to the reference may still be incorrect. The
limited variance in our reported BERTScore val-
ues (0.70-0.73) for Telugu further suggests that
these metrics may not be sensitive enough to mean-
ingful differences in justification quality. A more
robust assessment would require human evaluation,
which could better judge correctness, faithfulness,
and usefulness of both the questions/answers and
the justifications. Future work should therefore
complement automatic metrics with systematic hu-
man evaluation. Naive RAG and Advanced RAG
approaches that we use for experiments often re-
quire significant processing time, particularly for
languages like Telugu. This is due to the complex-
ity of tokenization, retrieval, and generation stages,
which may not be as optimized for low-resource
languages as they are for English. We have used
RSS feeds from only a small number of sources and
we have not performed ablation studies on the indi-
vidual components of Advanced RAG. Since our
dataset is derived through translation from English,
it may not fully represent native Telugu. Transla-
tions tend to exhibit different levels of formality,
topic distribution, and cultural biases compared to
texts in Telugu produced by native speakers. There-
fore, while our dataset serves as a useful resource,
we acknowledge that future work should prioritize

collecting and incorporating more native-authored
Telugu data.
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