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Abstract

The performance of Automatic Speech Recog-
nition (ASR) systems has improved signifi-
cantly, driven by advancements in large-scale
pre-trained models. However, adapting such
models to low-resource languages such as
Nepali is challenging due to the lack of labeled
data and computational resources. Addition-
ally, adapting the unique speech parameters of
the speaker to a model is also a challenging
task. Personalization helps to target the model
to fit the particular speaker. This work inves-
tigates parameter-efficient fine-tuning (PEFT)
methods like Low-Rank Adaptation (LoRA)
and Decomposed Weight Low-Rank Adapta-
tion (DoRA) to improve the performance of
fine-tuned Whisper ASR models for Nepali
ASR tasks by Personalization. These exper-
iments demonstrate that the PEFT methods
obtain competitive results while significantly
reducing the number of trainable parameters
compared to full fine-tuning. LoRA and DoRA
show a relative WER to F'T'g,s. increment of
34.93% and 36.79%, respectively, and a rela-
tive CER to F'I'g4se increment of 49.50% and
50.03%, respectively. Furthermore, the results
highlight a 99.74% reduction in total training
parameters.

1 Introduction

Automatic Speech Recognition (ASR) systems like
voice assistants are widely used with the rapid de-
velopment of deep learning models (Long et al.,
2019). However, the system’s performance de-
pends on the diversity of the speech data. The
model performs poorly on a different speaker with
different speech characteristics that were not ini-
tially trained on. Personalization of the speaker
helps fill that gap by making the ASR model work
with the unique characteristics of the individual
speaker. Training an ASR model requires high-
quality speech data (Long et al., 2019; Radford
et al., 2022). Collecting and training user-specific

speech data for the model is challenging due to
factors that consider user privacy. Most ASR appli-
cations are used on lightweight handheld devices
with limited processing power. Customization of
the model by fine-tuning the model based on user
data is very difficult and inefficient due to the sig-
nificant training parameters. Techniques such as
residual adapter for fine-tuning (Tomanek et al.,
2021), federated learning on devices by adopting
the subset of weights (Jia et al., 2022a), and fine-
tuning the model’s attention and bias independently
(Huang et al., 2021). ASR tasks for low-resource
languages and Indo-Aryan languages like Nepali
differ due to the language’s structure and nature
(Bal, 2004). Currently, Parameter Efficient fine-
tuning (PEFT) is often used for Large Language
Models (LLMs) because it lowers the computation
power required to tune the model. The PEFT strate-
gies, like LoORA and DoRA, are used to adapt the
models with large trainable parameters. Due to the
low use of resources by the adapted and merged
model, it allows the large model to be inference
using a consumer-grade GPU (Hu et al., 2021). Ap-
proaches like LoORA and DoRA are implemented
for improving the efficiency of some state-of-the-
art ASR models (Joseph and Baby, 2024; Yang
et al., 2023). Here, an efficient speaker person-
alization approach using PEFT, two approaches,
LoRA and DoRA, is proposed. The approach uses
the low-rank approximation to efficiently adopt the
ASR model for the targeted speaker with the lim-
ited weight addition, reducing the computation and
memory restrictions (Hu et al., 2021; Liu et al.,
2024).

2 Related Works

Traditional automatic speech recognition (ASR)
architectures employed Hidden Markov Models
(HMMs) together with Gaussian Mixture Models
(GMM-HMM) to efficiently capture temporal dy-
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namics and phonetic transitions (Rabiner, 1989).
However, HMMs suffered in terms of speaker vari-
ability, strict temporal assumptions, and scalabil-
ity limitations (Chakraborty and Talukdar, 2016).
The development of hybrid architectures with Deep
Neural Network - Hidden Markov Model (HMM-
DNN) combinations improved robustness but at the
expense of heavy computational resources (Li et al.,
2013). Major architectures used for speech recogni-
tion are CNN (LeCun et al., 1989), LSTM (Hochre-
iter and Schmidhuber, 1997), BiLSTM (Schuster
and Paliwal, 1997), RNN (Rumelhart et al., 1986),
GRU (Chung et al., 2014). Traditional and recent
ASR model uses a combination of the above archi-
tectures to perform speech transcription tasks in
the Nepali ASR Domain (Regmi and Bal, 2021;
Ghimire et al., 2024a). The transformer (Vaswani
et al., 2017) based models work great for Nepali
ASR tasks (Paudel et al., 2023). For speech per-
sonalization, different approaches like the Deep
Neural Network (DNN) based acoustic modeling
(Hinton et al., 2012), (Singular Value Decomposi-
tion) SVD based compression scheme (McGraw
et al., 2016), user feedback (Mahesh Krishnamoor-
thy, 2016), controllable speech synthesis approach
(Yang et al., 2023), enhancing quantized model
(Zhao et al., 2023) were used. Before that, the data
sparsity issue was solved by using speaker depen-
dence with condensed vectors, reducing parameters
during model adaptation using some regularization
approach (Saon et al., 2013; Snyder et al., 2018;
Fan et al., 2020; Sari et al., 2020). The PEFT strate-
gies used with LLMs includes methods like Adapt-
Former (Chen et al., 2022), Visual Prompt Tuning
(VPT) (Jia et al., 2022b), Low Rank Adaptation
(LoRA) (Hu et al., 2021), Weight-Decomposed
Low-Rank Adaptation (DoRA) (Liu et al., 2024),
and Scaling & Shifting Your Features (SSF) ( (Lian
et al., 2022), among those the LoRA and the DoRA
are implemented for improving the efficiency of
the LLMs like GPT-2/3 (Radford et al., 2019),
RoBERTa (Liu et al., 2019), and in some state-
of-the-art ASR models (Joseph and Baby, 2024;
Yang et al., 2023). Currently, the model is biased
per speaker by fine-tuning the model’s attention
based on methods such as implementing a residual
adapter for fine-tuning, federated learning on edge
devices, and adopting a subset of weights. There
is also a way of targeting a speaker for speech syn-
thesis (Gabrys et al., 2022), which uses the cleaned
version of speaker data for ASR Models to pro-
cess (Wang et al., 2019). Speech data is prepro-
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cessed to improve speech parameters fed to the
ASR model, thus enhancing the performance of the
ASR model in noisy backgrounds (Wu et al., 2017).
Experiments have also shown that a small volume
of disordered speech of an individual’s training
data can benefit from Personalized ASR (Tobin
and Tomanek, 2021). Fine-tuning the base model
has also shown an improvement in the performance
of the ASR for the Nepali language using active
learning (Ghimire et al., 2023) and PEFT (Ghimire
et al., 2024b). The Transformer (Vaswani et al.,
2017) model has attention mechanism components,
which are used by Low-rank adaptation as the Q, K,
and V target modules for speech personalization,
which can be used to personalize the ASR system
without compromising the model’s performance
(Joseph and Baby, 2024). Many commercial prod-
ucts like Google Home'!, Amazon Alexa?, Apple
Siri3, Microsoft Copilot*, and different voice assis-
tants also perform speech personalization to make
interaction with users easier (Hoy, 2018).

The use of LoRA and DoRA is increasing in
low-resource languages as well, and this motivated
us to perform speaker personalization on the Nepali
Language to improve the overall interaction with
the ASR system.

3 Methodology

3.1 LoRA-based Speaker Personalization

LoRA (Low-Rank Adaptation)(Hu et al., 2021)
technique is adopted to fine-tune the pre-trained
weight matrices of the pre-trained Whisper (Rad-
ford et al., 2022) model as shown in Figure 2.
Following LoRA (Hu et al., 2021), fine-tuning of
a original pre-trained weight matrix Wy (where
Wy € R™F; d and k are dimension of input feature
vector and output feature vector respectively), the
fine-tuning is limited by low-rank decomposition:
W' =Wy + AW = Wy + BA where B € R>"
and A € R"™* with rank » < min(d, k). The pre-
trained weight W remains frozen, and only A and
B are trainable, reducing the computational burden.
A and B are multiplied by the same input, and their
element-wise additions are calculated, and for an
input vector h = Wy, the new forward pass is
h= W'z= Wz + BAz (Huetal., 2021).

"https://home.google.com
Zhttps://alexa.amazon.com
3https://www.apple.com/siri/
*https://copilot.microsoft.com/
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Figure 1: Architecture diagram of the Transformer
model

3.2 DoRA-based Speaker Personalization

DoRA (Weight-Decomposed Low-Rank Adapta-
tion) (Liu et al., 2024) technique is adopted where
each weight matrix is mapped in each layer by
incorporating another set of weight matrices, as
outlined in Figure 3. As per DoRA (Liu et al.,
2024), Weight decomposition is outlined as:
Wo = mx (V/[|[Vlle) = [[Wlle x (W/[IW]l),
where m € R is the magnitude vector,
V € R¥F is the directional matrix, and ||.||.
denotes the vector-wise norm across each column
where d and k are dimension of input feature
vector and output feature vector respectively.
W= m o« (V 4+ AV)/([V + AV]l) =
m* (Wo + BA)/(|[Wo + BA|l.)

Here, AV is the incremental directional update
learned by the product of two low-rank matrices B
and A. The matrices B € R¥" and A € R™** are
initialized according to DoRA’s strategy so that W’
is equal to Wy before fine-tuning. DoRA enables
more fine-grained updates across attention heads,
improving adaptation efficiency (Liu et al., 2024).

3.3 Evaluation Metrics

In this research, Word Error Rate (WER), Char-
acter Error Rate (CER), Relative WER (RWER),

LoRA

Pre-Trained
Weights

Pre—-Trained
Weights

i
Figure 3: Architecture diagram of DoRA

and Relative CER (RCER) are used to evaluate the
model’s performance, rank selection, and target
module combination selection in PEFT approaches.
We discarded Match Error Rate (MER) from our
evaluation as it is rarely used in ASR benchmarks
and for script-specific nuances of the Nepali lan-
guage in Devanagari script, where MER offers lim-
ited value over CER and complicates interpreta-
tions.

3.3.1 WER and CER

WER evaluates the accuracy of text recognition
systems at the word level. CER evaluates similarly
based on characters. Both metrics measure the
percentage of incorrectly recognized words or
characters, considering substitutions, insertions,
and deletions.

__ Substitutions+Insertions+Deletions
WER% = Total Words in Reference x 100
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Similarly, CER also evaluates the accuracy
as WER, but at the character level.

3.3.2 Relative Metrices (RWER and RCER)

The Relative Word Error Rate (Relative WER)
and the Relative Character Error Rate (Relative
CER) are evaluative measures that examine the
performance differences of a specified system
compared to a reference baseline.

: _ WERsystem _WERbaseline

Relative WER% = S — x 100%
. CERgystem —CERpgseli

Relathe CER% — system baseline X 100%

CERbaseline

3.4 Methodology Details

Two variations of Low-Rank Adapters, namely,
LoRA and DoRA, are proposed for speaker per-
sonalization to be used with the fine-tuned Whisper
(Radford et al., 2022) a transformer (Vaswani et al.,
2017) based model from OpenAl in the Hugging-
face (Wolf et al., 2019) ecosystem. The Proposed
approaches for speaker personalization are hereby
called PEFT-LoRA for the proposed model with
LoRA and PEFT-DoRA for the proposed approach
with DoRA. Another experiment is conducted to
check the minimum amount of speech data required
to PEFT fine-tune an ASR Model for the optimum
rank found as per Table 2 for a set of speakers from
Table 1.

Random Gaussian initialization is used to seed
the trainable parameters for A; Zero initialization
is used for BAW = BA is set at zero at the
beginning of training so that the model can grad-
ually learn to adapt to the Nepali language while
retaining the pre-learned knowledge from the pre-
trained Whisper model even with limited labeled
data, making it a perfect fit for low-resource set-
tings. Whereas DoRA / LoRA weights can be ap-
plied to any layer, our experiments focus on their in-
tegration into the query (W), key (W},), and value
(W, ) matrices of the attention mechanism which is
in line with findings from previous research, which
demonstrated how parameter-efficient approaches
can be successfully used on these components to
improve model performance (Radford et al., 2022;
Huetal., 2021; Liu et al., 2024; Huang et al., 2020).

Instead of fine-tuning all the parameters, LoORA
and DoRA can be used to introduce low-rank learn-
able parameters update ( AW ) in attention layers,
reducing computation cost while maintaining ex-
pressiveness (Radford et al., 2022; Liu et al., 2024;
Hu et al., 2021).

4 Dataset

A portion of the CommonVoicel7 (Ardila et al.,
2020) dataset with slice/split of ne-NP/validated
was taken for four speakers, and two speakers au-
dio data was taken from the NepDS (Shishir Paudel
and Bal Krishna Bal, 2022) dataset by taking the
speaker having a commutative speech duration of
more than 4 minutes. The data from both datasets
is compiled and merged to form a compiled dataset
(CommonVoicel7 and ILPRL, 2025). The speaker-
specific utterances are ordered reversely based on
the number of utterances. First, six speakers were
selected based on training data ranging from 4 to
18 minutes. Table 1 presents all of the properties of
the speaker from the formed dataset labeled under
the speaker column where the suffix CV means the
speech data from CommonVoicel7 and NEPDS
means the speech data from the NepDS dataset
along with speaker identification number, dura-
tion in minutes, number of utterances, and test-
train split data. To identify the minimal amount
of speech data for LoORA and DoRA PEFT imple-
mentation additional dataset with speech data as
described in the Speech Range column of Table 4
is prepared.

Speaker ID Gender Duration Utterances Train Test
SpeakerNEPDS1 NS1 M 11.67 216 194 22
SpeakerNEPDS2 NS2 F 17.45 209 188 21
SpeakerCV1 S1 M 8.34 160 144 16
SpeakerCV2 S2 M 9.41 150 135 15
SpeakerCV3 S3 M 5.35 96 86 10
SpeakerCV4 S4 M 4.18 61 54 7

Table 1: Speaker Dataset for combined dataset

S Experimental Setup

Transformer (Vaswani et al., 2017) Architecture is
used for all our experiments implemented through
the Huggingface architecture with PyTorch (Paszke
et al., 2019) as the codebase. LoRA and DoRA
weights are inserted into the Whisper Model Trans-
former Architecture for training. Every experi-
ment is conducted on “Intel Data Center GPU Max
1550”7 GPU (Wu et al., 2024). The FTpyse is a
fine-tuned Whisper (Radford et al., 2022) model
on OpenSLR54 (Kjartansson et al., 2018). For all
the experiments, the Whisper Tokenizer that uses
tiktoken (a byte pair tokenizer wrapper) decodes
and encodes the dataset used for PEFT (Xu et al.,
2023). The dataset (CommonVoicel7 and ILPRL,
2025), model, and adapters from this research are
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available in HuggingFace’, and the code used is
made available in GitHub®.

5.1 Transformer Model Architecture

A basic block diagram of the Whisper Model
(Transformer Model) is shown in Figure 1. This
architecture contains an encoder-decoder structure
where the encoder processes into audio features and
generates a corresponding token, and the decoder
decodes back the output text from the token pre-
dicted; the model leverages a multi-head attention
mechanism and feed-forward layers to capture both
local and global dependencies in the speech data.
Query (Q), Key (K), and Value (V) are the metrics
for self-attention in the transformer model, which
PEFT later uses to adopt the Low-Rank Adaptation
using LoRA and DoRA.

Layer Normalization and Residual Connections
are also leveraged. The model has 1.55 billion
parameters, with a 32-layer encoder and decoder,
16 attention heads, and a 1280-dimensional em-
bedding space. It processes 80-dimensional Mel-
spectrogram inputs, generates transcriptions using
a vocabulary of 51,865 tokens, and employs ro-
tary positional embeddings for efficient sequence
modeling (Radford et al., 2022).

5.2 Experiment Details

Whisper Model (Radford et al., 2022) is fine-tuned
with OpenSLR54 (Kjartansson et al., 2018) dataset
to form a new fine-tuned base model for our ex-
periment called F'T,s. because the base model
from Whisper (Radford et al., 2022) out-of-the-
box performed poorly on the Nepali transcription
task. The transformer-based encoder and decoder
are modified for the Whisper model. Whisper
has an encoder and decoder, each with multi-head
self-attention and feed-forward networks. In the
encoder, every self-attention layer is made up of
weight matrices (W,, Wy, W, and W,,) (Xu et al.,
2022), initially 1280 x 1280 to match Whisper’s
embedding size. LoRA replaces these matrices
with two smaller matrices, A and B, where A
is of size 1280 x r and B is of size r x 1280.
The rank of the matrix is obtained by attaching
LoRA and DoRA components for ranks of 1 to
128. The final weight update is computed as
AW = A x B, and this is added on top of the
pre-trained weights. DoRA is also of a similar

Shttps://hf.co/kiranpantha
®https://github.com/kiranpantha/LT-EDI-SPEECH

strategy but decouples rank from input-output di-
mensions so that updates can be applied separately
per attention head. Since Whisper has 16 attention
heads per layer, DoRA can better distribute updates
across different model parts. LoORA and DoRA may
be applied in the cross-attention layers of the de-
coder and even feed-forward networks, thus allow-
ing fine-tuning without compromising the knowl-
edge of the base model. The formula defines the
number of new parameters introduced by LoRA:
LoRAparams = N x m x (Params of A,B) =
Nxmx(2xCxr)and DoRApqrams = N xmx
(Paramsof A,B,V) = Nxmx(2xCxr+ C).
Where N = Number of Encoder, m= Number
of Matrices using DoRA or LoRA Weights, r =
LoRA/DoRA Rank, C = Encoder Cell Size (Hu
etal., 2021; Liu et al., 2024) and training parameter
for each rank is tabulated on Table 2, 3.

We use Rank (r) selection for the speaker adap-
tation, and further analyze the Query (Q), Key (K),
and Value (V) Projection are used to best project
the model performance based on the attention mod-
ules of the transformer model.

For Rank (r) selection, the Range of rank (r)
values is evaluated to find the ideal value that fits
with the speaker. The base Model is denoted by
Base, fine-tuned models are denoted by F'7T'. In
the first case, the model is fine-tuned with the
Nepali OpenSLR54 Dataset and is denoted as
FTyase, which will act as a base model for our
relative evaluation. In the second case, only the
attention layer is fine-tuned (F#"14) as mentioned
in Table 2 for every combination of target modules
in the observed scenario (Huang et al., 2021).
Based on the work by the authors of LoRA and
DoRA, multiple sets of Query, Value, and Key
Metrics of the attention layers (Hu et al., 2021; Liu
et al., 2024) are selected. The subscript of F'T5gse
has the variant whether the F'Tp,. is targeted on
Cattention (c_attn), Query(Q) , Key(K) , and
Value(V') . Experiments on rank are linked on the
First Row of the Table. F'T4.;, where key value
metrics of the attention layer are being fine-tuned,
and F'T'4.q, has query and value of the attention
layer being fine-tuned. The number of Trainable
Parameters is listed on the row labeled as T'P. The
ideal rank is determined by conducting several
experiments as described above. For ranks above
64 and the training parameters are more significant
than F'T'y.4,; thus, ranks ranging from 1 to 32 are
considered.
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WER %

AVG

Model TP RCER% RWER %
S1 S2 S3 S4 NS1 NS2 AVG CER%
Base 88.34 89.93 89.36 82.07 86.54 87.17 87.24 30.17
FTyase 1.554B  36.85 43.77 5847 6241 5426 5354 5155 14.89
FTpq (r=32) 1573M 38.14 4038 43.16 5224 1793 1726 34.85 8.25 44.59 32.40
FT, (r=1) 049M 41.24 4038 83.16 50.75 20.69 25.22 43.57 8.84 40.62 15.47
« FTg (r=2) 098M 4227 3269 40.00 56.72 20.69 14.16 3442 822 44.80 33.23
% FT,, (r=4) 1.97TM  36.08 34.62 4842 4925 2138 1947 34.87 8.69 41.64 32.36
- FTy (r=28) 393M  37.11 4038 4530 47.76 1655 14.16 33.54 752 49.50% 34.93*
FT,, (r=16) 7.86M 4330 4038 43.16 5224 18.62 19.03 36.12  8.55 42.58 29.93
FTy (r = 32) 15.73M  38.14 4038 43.16 53.73 20.69 1637 3541 8.42 43.45 31.31
FTpq (r=32) 1597M 38.14 4038 43.16 5224 20.69 1372 3472 824 44.66 32.65
FTg (r=1) 0.737M  34.02 4038 50.53 50.75 2345 2832 3791 9.71 34.79 26.46
FT, (r=2) 1.228M 41.24 32.69 40.00 53.73 20.69 16.81 34.19 8.4l 43.52 33.68
;2 FTg (r=4) 2211IM 3299 34.62 4842 5224 20.00 1991 3470  8.60 42.24 32.69
8 FT,, (r=238) 3.932M 36.08 40.38 41.05 47.76 16.07 14.16 32.58  7.44 50.03* 36.79*
FTy, (r = 16) 8.110M 4227 4038 43.16 50.75 17.24 17.70 35.25 8.36 43.85 31.62
FTgy, (r = 32) 1597M 38.14 40.38 43.16 52.24 20.69 17.70 3539  8.41 43.52 31.35

Table 2: Comparision of CER% and WER% accross different rank for LoORA and DoRA, * = selected row for rank

based on highest RWER% and RCER %

K Q V TP CER% RCER% WER% RWER%
S1 S2 S3 S4 NS1 NS2 AVG S1 S2 S3 S4 NS1 NS2 AVG
v 1.966M 10.04 1134 1126 11.62 433 793 942 36.74 4536 4423 4526 5224 2138 2257 3851 25.30
v 1.966M 9.64 12.15 1029 11.89 1745 631 11.29 24.18 4433 50.00 41.05 5224 3379 2257 40.66 21.13
é v’ 3932M 944 931 10.1 1027 3.84 550 8.08 45.74 38.14 3846 46.32 50.75 20.00 18.58 3538 31.37
S v v 1.996M 10.44 931 10.68 10.00 421 6.88 8.59 4231 4742 28.85 4421 50.75 20.69 2699 36.48 29.23
v v 3932M 1064 972 932 11.08 421 372 8.12 45.47 4227 40.38 40.00 4925 22.07 14.16 34.69 32.71
v v 3932M 723 1053 854 11.08 371 728 8.06 4587+  28.87 3846 42.11 5224 20.00 2257 3404 33.97*
v v v 589%8M 1024 1012 9.3 11.89 359 647 857 42.44 4124 3846 41.05 50.75 20.69 21.68 35.64 30.86
2.088M 8.84 11.74 10.68 11.62 433 801 9.20 38.21 4124 46.15 4211 5224 20.69 23.01 37.57 27.12
v 2.088M 9.04 12.15 1087 1297 1324 6.63 10.82 27.33 4021 50.00 41.05 56.72 30.34 25.66 40.66 21.13
« v 4176M  9.04 972 1029 1162 371 558 833 44.06 37.11 4231 4526 4925 1931 19.03 3538 31.37
% v v 2.088M 10.44 931 1049 1027 3.84 890 8.87 40.43 4536 28.85 4421 5224 20.69 3142 37.13 27.97
= v v 4176M 10.84 972 893 1054 446 380 8.05 45.94 4227 40.38 40.00 47.76 22.07 14.60 34.51 33.06
v v 4176M  6.83 1093 854 1054 371 720 7.96 46.54% 3196 3846 42.11 4776 2138 2257 3404  33.97*
v v v 6264M 1044 1012 9.3 11.62 359 6.72 8.60 4224 4227 3846 41.05 50.75 20.69 21.68 35.82 30.51

Table 3: Comparison of CER% and WER% across different attention layer configurations for LoRA and DoRA for
Rank (r) = 8; * = selected row for Target Module combination based on highest RWER% and RCER%

For Query, Key, and Value projections, dif-
ferent target modules like Query(Q) , Key(K) ,
and Value(V') are experimented to evaluate to
analyze the model’s performance. The rank is
selected as per the initial rank analysis using the
RCER and RWER values of the experiment for
the given ranks. Each sub-module is taken for the
experiment on each set of (), K, and V' parameters.
The first column of the Attention Layer has three
subdivisions of K, (), and V', where v' means the
model is activated on that group of target attention
sub-modules. Moreover, the group of Attention

Layer per speaker is tabulated below, where S1,
S2, ..., NS1, NS2, TP, AVG, and RCER
have the same meaning as in the Table 2.

For Optimal Speaker Speech data, different
quantities of speech data for a speaker were taken
from a low of 1 minute to over 13 minutes, as in
table 4. After that, the PEFT with the rank selected
from optimal rank selection and query, key, and
value are taken to apply the LoRA and the DoRA
approaches to each commutative speech duration.
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Duration  Train LoRA DoRA
(min) Params CER (%) WER (%) CER (%) WER (%)

1 3.932M 13.71 49.62 13.74 50.31

3.932M 11.54 42.29 11.53 43.01
3 3.932M 11.04 42.50 11.04 42.83
4 3.932M 10.03 39.07 10.08 39.24
5 3.932M 9.70 35.84 9.44 37.37
6 3.932M 8.95 36.72 8.81 36.34
7 3.932M 8.81 35.49 8.86 35.38
8 3.932M 6.94 34.11 7.96 33.88
9 3.932M 491 22.83 4.93 22.96
10 3.932M 5.89 25.43 5.60 24.80
11 3.932M 6.21 23.20 6.16 22.94
12 3.932M 6.08 24.48 5.95 23.97

Table 4: Comparison of LoRA and DoRA for CER(%)
and WER (%) metrics across cumulative speech dura-
tion ranges with Rank (r = 8), K'V Target Model.

6 Results and Discussion

6.1 Rank (r) selection for proposed approach

Rank 8 is selected as the best good value for the
rank () for personalization of a model, as the rank
had the highest RCER and RWER from LoRA and
DoRA approaches from Table 2 for the PEFT done
on the ranks from 1 to 32 on QV target modules.

6.2 Query, Key and Value Projections

As per Table 3, the model’s performance is ex-
cellent when the two-attention layers of Key and
Value are taken for the selected rank of r = 8. The
Key Value Pair has better RCER and RWER evalua-
tion metrics than other attention modules. The KV
combination performs better than the KQ combina-
tion. It gives better results, identical to the resulting
pattern obtained from F'T'4.1,, giving better results
than F'T'y.4, (Huang et al., 2021).

6.3 Speech Data Duration for PEFT

The test results from table 4 reflected that just 1
minute of data yielded comparatively poor CER
and WER metrics (around 13% CER). However, as
more data was utilized, both these metrics continu-
ally improved. At around 3 minutes, CER dropped
to around 10.5%, and at 5 minutes, to around 9%.
Most importantly, when around 10 minutes of train-
ing data was used, CER kept dropping at around
5%, indicating good recognition performance.

7 Conclusion

Personalization of speech for the targeted speaker
is quite challenging to fine-tune to fit the speech
patterns. Using CER metrics implementing LoRA
and DoRA, the finding shows RCER increment
of 49.50% and 50.03% respectively. Similarly,

for WER metrics implementing LoRA and DoRA
shows RWER increment of 34.93% and 36.79 %
respectively. This result indicates that the DoRA
approach performs better than the LoRA approach
for both metrics. Further, the K, V combination
of target module is found to be best performing
in both LoRA and DoRA approaches using both
metrics (RCER and RWER) as per Table 2. The
result also shows a reduction of 99.74% of total
training parameters used to train and compute using
PEFT compared to full fine-tuning.

Taking a system having CER < 5% to be our
desired metrics, the findings suggest that around 10
minutes of speaker-dependent data is sufficient for
effective fine-tuning with LoRA and DoRA, and
it can serve as a good target for speech adaptation,
especially personalized ASR applications in low-
resource languages.

8 Limitations

Some limitations of the paper are highlighted in
this section. Here, the personalization experiments
were conducted on a small set of speakers (six in
total, five Male and one Female), which may not
sufficiently represent the full spectrum of Nepali
language variation. Personalization was done in
the Nepali language, so this is unclear how the
LoRA/DoRA personalization approach will behave
in other low-resource languages. Although show-
ing improvement, it’s unclear if the model would
hold performance with speakers providing noisy,
varied, or out-of-domain speech data.
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