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Abstract
Speech recognition has received extensive re-
search attention in recent years. It becomes
much more challenging when the speaker’s
age, gender and other factors introduce vari-
ations in the speech. In this work, we pro-
pose a fine-tuned automatic speech recogni-
tion model derived from OpenAI’s whisper-
large-v2. Though we experimented with both
Whisper-large and Wav2vec2-XLSR-large, the
reduced WER of whisper-large proved to be
a superior model. We secured 4th rank in the
LT-EDI-2025 shared task. Our implementation
details and code are available at our GitHub
repository1.

1 Introduction

Automatic Speech Recognition (ASR) has trans-
formed the way humans interact with machines by
enabling devices to understand spoken language.
It plays a crucial role in enhancing accessibility
for individuals with disabilities, such as the elderly
and those with hearing or speech impairments(Yu
and Deng, 2017; Malik et al., 2021). By allow-
ing voice-based interaction, ASR improves ease of
communication and overall quality of life for these
groups.

While ASR systems have achieved impressive
accuracy in languages like English, low-resource
languages such as Tamil still face challenges
(Ramesh and Gupta, 2021). Tamil, spoken by mil-
lions across Tamil Nadu, Sri Lanka, and Singa-
pore, is linguistically rich and features numerous
regional dialects, making speech recognition par-
ticularly complex. These challenges are amplified
when recognizing speech from vulnerable popu-
lations, such as those with dysarthria or slurring
(Christensen, 2013).

In this work, we focus on building an inclusive
Tamil ASR system by fine-tuning the Whisper

1https://github.com/Priyobroto98/
ASR-Tamil-LTEDI-2025

model (vasista22/whisper-tamil-large-v2), known
for its strong multilingual performance (Radford
et al., 2022). To make the fine-tuning process
efficient, we use Low-Rank Adaptation (LoRA),
which reduces the computational burden while
maintaining high accuracy (Hu et al., 2021). Our
training dataset includes Tamil speech samples
from diverse dialects and speakers with impair-
ments. The fine-tuned model achieves a Word
Error Rate (WER) of 38.42%, demonstrating
significant improvement and the potential of
Whisper models in developing accessible ASR
systems for underrepresented languages.

2 Related Work

Automatic speech recognition (ASR) has evolved
from hybrid Hidden Markov Model-Gaussian Mix-
ture Model (HMM-GMM)(Xuan et al., 2001)
frameworks to end-to-end deep learning systems.
Early systems leveraged HMMs for temporal mod-
eling and DNNs for acoustic feature extraction,
achieving significant accuracy improvements over
traditional methods. Transitioning to architec-
tures like LSTMs and transformers enabled bet-
ter sequential context capture, with models like
Conformer and ContextNet integrating convolu-
tional and self-attention mechanisms for spec-
tral and global dependencies(Prabhavalkar et al.,
2021). Self-supervised learning paradigms, such as
wav2vec 2.0, further advanced low-resource ASR
by leveraging unlabeled data for robust feature
learning(Mainzinger and Levow, 2024)(Kheddara
et al., 2024).

Recent efforts focus on domain-specific chal-
lenges, including elderly and vulnerable popula-
tions as well as low-resource speech recognition.
(B et al., 2022)(Bartelds et al., 2023)presented
findings from a shared task on Tamil ASR for
vulnerable individuals, emphasizing the difficulty
of recognizing atypical speech patterns in elderly
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and impaired speakers. Their work demonstrated
the utility of HMM-DNN hybrid systems(Wang
et al., 2019) and end-to-end models alongside data
augmentation and transfer learning to improve ro-
bustness. In a follow-up shared task, (B et al.,
2025) expanded the dataset and evaluated multi-
lingual models (e.g., XLS-R, Whisper), showing
that fine-tuning, domain adaptation, and acous-
tic normalization techniques effectively addressed
speech variations and noise in low-resource set-
tings. Similar advances include acoustic model
adaptation using age-specific corpora like EARS
and VOTE400, which reduce word error rates
(WER) by 25% for elderly speech by mitigat-
ing spectral and prosodic variations. For low-
resource languages, techniques like self-training
and text-to-speech augmentation improve WER
by 20–25%, as demonstrated for Gronings and
Mvskoke. Transformer-based streaming architec-
tures, employing time-restricted attention, balance
latency and accuracy, while hybrid HMM-DNN
systems remain relevant for stable frame-level pro-
cessing. Despite progress, challenges persist in
dataset diversity, real-time adaptation, and compu-
tational efficiency for edge deployment.

3 Dataset Description and Analysis

The dataset focuses on addressing the challenges
faced by vulnerable groups, specifically elderly
individuals and transgender people in Tamil-
speaking communities, where elderly individuals
often encounter difficulties using digital tools in es-
sential locations like banks, hospitals, and adminis-
trative offices, where speech-based systems could
significantly ease their interactions (Gales et al.,
2019; Liu and Lutters, 2021). Similarly, trans-
gender individuals, frequently deprived of primary
education due to societal prejudice, rely heavily on
speech as their primary mode of communication
(Pandey and Mishra, 2019; Bose et al., 2019). By
capturing the spontaneous speech patterns of these
groups, the dataset aims to facilitate the develop-
ment of inclusive and accessible ASR systems that
cater to their unique linguistic needs and daily life
challenges (Albanie et al., 2020; Srinivasan et al.,
2023).

The dataset contains 908 samples totaling nearly
5 hours of speech. We have split the entire corpus
into training (894 samples, 4.87 hours), validation
(9 samples, 0.05 hours), and test sets (5 samples,
0.03 hours) for tracking the performance metrics at

different stages of model development. In addition
to this, we were provided with 2 hours of high-
quality audio speech data, which will be used for
testing purposes after successfully training our best
model and following best practices.

Set Samples Duration
(hours)

Avg Duration
(seconds)

Avg Text
Length (chars)

Training 894 4.87 19.61 212
Validation 9 0.05 20.00 256
Test 5 0.03 20.00 229

Table 1: Dataset Statistics and Composition

We conduct spectrogram analysis(Khodzhaev,
2024) on the speech dataset to characterize the
time-varying frequency properties of the audio sig-
nals. In figure-1 the analysis confirms that all sam-
ples exhibit dominant speech energy below 4 kHz,
with clearly observable formant structures.

Figure 1: Representative spectrograms illustrating dom-
inant speech energy and formant structures.

The overall spectral clarity and low background
noise across all samples suggest high-quality
recordings. These observations not only confirm
the suitability of the data for further speech process-
ing tasks—such as automatic speech recognition
or speaker profiling (Nagrani et al., 2017; Yu et al.,
2021), but also highlight the diversity in speak-
ing styles and potential demographic differences
among the speakers (Narayanan and Georgiou; ?).
Such variability is crucial for developing robust
and inclusive speech systems that generalize well
across different populations.
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Figure 2: Pitch Distribution

In figure-2 the pitch distribution(Deruty et al.,
2025) graph reveals a clear multimodal pattern,
with a dominant peak near 200 Hz and secondary
peaks around 100 Hz and at higher frequencies,
indicating demographic diversity. The use of a
logarithmic x-axis reflects the perceptual nature
of pitch. Variations in peak heights highlight gen-
der imbalance, which may introduce bias in ASR
performance toward dominant voice types.

Figure 3: Silence Percentage Distribution

The dataset exhibits a bell-shaped silence distri-
bution (jin Shim et al., 2024) (mean 27.6%, me-
dian 26.4%) with a right skew, where most sam-
ples contain 10–50% silence (peaking at 25–30%)
under a 30 dB/16 kHz detection threshold (refer
Figure 3). This aligns with natural speech patterns,
where pauses constitute approximately one-quarter
of spoken content (Gold and Morgan, 2000), in-
forming ASR design for effective endpoint detec-
tion and robustness (Ramírez et al., 2007). The
balanced silence distribution facilitates training on
realistic speech rhythms and timing structures (Ju-
rafsky and Martin, 2000), improving temporal gen-
eralization in deployment scenarios.

From the analysis of temporal features (Fig-
ure 4), we found the audio dataset exhibits high-
quality temporal features with segmented speech
(amplitude ±1.5 units) and precise silence inter-
vals, evidenced by RMS energy drops to zero
and spectral rolloff between 500–3500 Hz. Stable

Figure 4: Audio Training Sample Temporal Features

RMS levels (∼0.4–0.5) during speech segments
indicate consistent articulation, while rolloff vari-
ations (1000–3000 Hz) reflect phonetic diversity,
demonstrating complementary temporal-spectral
features (waveform, energy, rolloff) that reveal con-
trolled recording conditions ideal for training ro-
bust speech models requiring precise acoustic char-
acterization (Rabiner and Schafer, 1978; Tolonen
and Karjalainen, 2000; Purwins et al., 2019; Zhang
et al., 2021).

Figure 5: Log-Scaled FFT Comparison in Training
Dataset

The log-scaled FFT analysis of the training
dataset reveals concentrated spectral energy (101–
104 magnitude) in lower frequencies (0–4000 bins)
with a sharp roll-off at 4000–5000 bins across sam-
ples, indicating bandwidth-limited audio rich in
harmonic content (refer Figure 5). Consistent noise
floors ( 10-1–100 magnitude) and spectral homo-
geneity suggest uniform recording/post-processing
conditions, while the preserved harmonic struc-
tures and logarithmic energy distribution (aligning
with auditory perception) highlight key perceptual
features of speech signals (Choi et al., 2018; Deller
et al., 1993; Verhelst and Roelands, 2000; Purwins
et al., 2019).

4 Methodology and Implementation
Details

In this study, speech recognition was performed us-
ing two pre-trained state-of-the-art models, Whis-
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per and XLSR. Both models were trained on the
Tamil corpus, and the best results were submitted
for the competition.

The Whisper model (Radford et al., 2023)
is a pre-trained automatic speech recognition
(ASR) model trained on 680,000 hours of
multilingual and multitask supervised data
sourced from the web. In our work, we have
utilized vasista22/whisper-tamil-large-v22,
which is a fine-tuned version of
openai/whisper-large-v23 on the Tamil
data available from multiple publicly available
ASR corpora. This transformer-based encoder-
decoder model processes log-Mel spectrograms
through convolutional layers in the encoder and
generates text autoregressively in the decoder. The
model was further fine-tuned on a Tamil corpus
of the given training dataset, providing a robust
baseline for Tamil speech recognition.

Figure 6: Whisper Model Architecture (https://
openai.com/index/whisper/)

To adapt the 1.59-billion-parameter Whisper
model efficiently, we utilize Low-Rank Adapta-
tion (LoRA) (Hu et al., 2021) and Dynamic Rank
Adaptation (DoRA) (Liu et al., 2024). These
techniques freeze pre-trained weights and inject
trainable low-rank matrices into specific trans-
former submodules, reducing computational over-
head while preserving model performance (Xu
et al., 2023).

LoRA decomposes weight updates (∆W ) into
two low-rank matrices A and B, where ∆W =
BA. For a weight matrix W ∈ Rd×k, the adapted

2https://huggingface.co/vasista22/whisper-tamil-large-v2
3https://huggingface.co/openai/whisper-large-v2

weights become:

W ′ = W +∆W

= W +B ·A, B ∈ Rd×r, A ∈ Rr×k

where r ≪ min(d, k) is the rank of adaptation.
This reduces trainable parameters from O(dk) to
O(r(d+ k)).

We apply LoRA to the query, key, value, and
output projection layers of each transformer block.
To ensure stable training, weight scaling is used:

∆W = α · BA

r
(1)

where α is a scaling factor (typically α ∈ [8, 32]),
introduced to stabilize updates for small r.

Figure 7: An overview of our proposed DoRA, which de-
composes the pre-trained weight into magnitude and direc-
tion components for fine-tuning, especially with LoRA to
efficiently update the direction component. Note that || · ||c
denotes the vector-wise norm of a matrix across each column
vector

DoRA extends LoRA by dynamically adjusting
the rank r during training (Liu et al., 2024). It
decomposes weights into magnitude (m) and di-
rection (V) components:

W = m · V

∥V∥F
(2)

where ∥V∥F is the Frobenius norm. During back-
propagation, the gradient flows primarily through
the direction V, enabling more expressive parame-
terization even at low ranks.

Quantization to 8-bit precision was implemented
using:

Wint8 = quantize
(
W − µW

σW

)

where:
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• W is the original full-precision weight matrix
or tensor.

• µW is the mean of the weight tensor W, used
for centering.

• σW is the standard deviation or scale factor
of W, used for normalization.

• Wint8 is the quantized 8-bit integer represen-
tation of the normalized weights.

• Ŵ is the dequantized approximation of the
original weights in floating point.

• quantize(·) maps a real-valued input to dis-
crete 8-bit integer levels (usually in the range
[−128, 127]).

followed by dequantization:

Ŵ = σW ·Wint8 + µW

Training employed mixed-precision arithmetic
(FP16) with the AdamW optimizer (β1 = 0.9,
β2 = 0.98, ϵ = 10−6), a learning rate of 10−5 with
50 warmup steps, and gradient accumulation over
2 steps. Only 2.99% of parameters (47.5M out of
1.59B) were trainable through selective application
of LoRA to the query, key, and value projection
layers.

During implementation, a comprehensive data
preprocessing pipeline was constructed using
WhisperProcessor components, which extract au-
dio features with a sampling rate of 16kHz
and prepare corresponding text transcriptions for
supervised training. We have used a custom
DataCollatorSpeechSeq2SeqWithPadding that
effectively handles variable-length audio inputs
and properly masks padding tokens in labels with -
100 to be ignored during loss calculation. The com-
bined use of 8-bit quantization, LoRA, and DoRA
reduced memory requirements by 4 times com-
pared to full-precision fine-tuning and achieved a
97% reduction in trainable parameters without sig-
nificant accuracy degradation, demonstrating the
efficacy of parameter-efficient methods (Dettmers
et al., 2023) for large-scale ASR (Radford et al.,
2023) adaptation.

On the other hand, we fine-tuned the pretrained
anuragshas/wav2vec2-xlsr-53-tamil4 checkpoint
with the Hugging Face Trainer API. The model is

4https://huggingface.co/anuragshas/wav2vec2-xlsr-53-
tamil

Figure 8: Fine-tuning XLSR for Tamil ASR
with Transformers. (https://huggingface.co/blog/
fine-tune-xlsr-wav2vec2)

a Wav2Vec2ForCTC type model (Conneau et al.,
2021) and was fine-tuned with full-scale fine-
tuning, without layer freezing or modifications.
Connectionist Temporal Classification (CTC) loss
was used during training and performance was
tracked with Word Error Rate (WER) and Char-
acter Error Rate (CER). Mixed precision training
was activated with fp16=true, and the best model
was chosen based on the minimum WER on the
evaluation set. Gradient accumulation with an ac-
cumulation step of 2 was used to stabilize training
and mimic larger batch sizes.

5 Result and Discussion

Submissions to the Shared Task on Speech Recog-
nition for Vulnerable Individuals in Tamil were
evaluated using the Word Error Rate (WER) be-
tween the ASR hypotheses and the reference hu-
man transcriptions for the evaluation set (Morris
et al., 2004).

WER =
S +D + I

N

Where: S is the number of substitutions, D is
the number of deletions, I is the number of inser-
tions, and N is the number of words in the refer-
ence transcriptions.

During the fine-tuning phase, a close watch was
kept on the WER and Character Error Rate
(CER) of both models, which were trained for
the same number of epochs (Hori et al., 2017).

Model Val.
Loss

WER(%) CER(%)

whisper-tamil-
large-v2

0.540 69.4 26.1

wav2vec2-
large-xlsr-53-

tamil

1.727 94.0 44.2

Table 2: ASR Model Performance Comparison

We compared both the models’ WER and
CER. Since the whisper-tamil-large-v2 model
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demonstrated significantly lower WER and
CER than the wav2vec2-large-xlsr-53-tamil
model, we selected it for generating transcriptions
for the test dataset and submitted those results for
final evaluation.

Team Name WER Rank
CrewX 31.9 1
NSR 34.85 2
Victory 34.93 3
JUNLP 38.42 4
SSNCSE 42.3 5

Table 3: Team-wise WER and Rank

We achieved a WER of 38.42 on the test dataset,
which helped us secure the 4th rank in the shared
task. This performance demonstrates the robust-
ness of parameter-efficient fine-tuning strategies
for multilingual ASR tasks on low-resource and de-
mographically sensitive datasets (Hsu et al., 2021).

6 Limitations

Despite its contributions, this work has several lim-
itations. The dataset’s limited size and dialectal
diversity may hinder generalization, particularly
for underrepresented Tamil accents (Addanki et al.,
2022). Computational constraints restricted the
exploration of more complex architectures and
large-scale training (Gaido et al., 2021). Evalua-
tion primarily relied on WER, which may not fully
reflect real-world intelligibility or user-centric per-
formance, especially for vulnerable populations
(Falk and Chan, 2007; Meng et al., 2021). The
model’s performance varied across regional pro-
nunciations, suggesting a need for more balanced
data. Additionally, the absence of human-centered
evaluations, such as user studies or error analysis
on critical phrases, limits insights into practical
usability (Amershi et al., 2019). Resource limi-
tations also prevented extensive hyperparameter
tuning and ablation studies. Broader metrics, in-
cluding semantic accuracy and user satisfaction,
could better assess assistive utility (Baker et al.,
2020). Finally, ethical considerations, such as bias
mitigation and inclusivity in data collection, were
not thoroughly examined (Hovy and Prabhumoye,
2021). Addressing these gaps in future work could
enhance robustness and fairness in Tamil speech
recognition.

7 Future Scope

To overcome these limitations and extend the im-
pact of this study, several avenues for future work
are proposed. Expanding the dataset to include
speakers from a wide range of demographics and
regions, as well as recording audio in diverse envi-
ronmental conditions, could enhance the model’s
robustness and adaptability (Ko et al., 2017; Be-
sacier et al., 2014). Incorporating advanced ar-
chitectures and exploring multilingual frameworks
may further improve performance (Pratap et al.,
2020; Conneau et al., 2021). Real-world deploy-
ment possibilities, such as live transcription ser-
vices and language learning tools for vulnerable
groups, offer practical applications of this research
(Albanie et al., 2020; Srinivasan et al., 2023). Col-
laborations with local communities and organiza-
tions to co-develop datasets and validate findings
can ensure inclusivity and greater acceptance of
the model in real-world scenarios (Bender et al.,
2021).

8 Conclusion

This work presents JUNLP’s efficient approach
to building an inclusive Tamil Automatic Speech
Recognition (ASR) system for vulnerable popula-
tions, including elderly and transgender speakers.
Using parameter-efficient fine-tuning (PEFT) meth-
ods Low-Rank Adaptation (LoRA) and Dynamic
Rank Adaptation (DoRA), we adapted the multi-
lingual Whisper-large-v2 model for low-resource
Tamil speech with demographic variation. Our
model achieved a Word Error Rate (WER) of
38.42% on the LT-EDI-2025 evaluation set, se-
curing 4th place. By freezing Whisper’s 1.59B pre-
trained weights and injecting low-rank matrices,
we reduced trainable parameters by 97% (47.5M)
and memory usage by 4 times, enabling fine-tuning
on limited hardware. DoRA’s decomposition im-
proved expressiveness, and 8-bit quantization with
mixed-precision training stabilized optimization.
Trained on 908 speech samples (5 hours) reflecting
dialectal diversity, the model showed promise in
inclusive ASR. Limitations include dataset size,
regional bias, and reliance on WER. Future di-
rections include expanding diverse corpora and
integrating user-centered evaluations. This study
affirms PEFT-enhanced Whisper models as viable
for equitable ASR in Tamil.
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