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Abstract

Detecting hate speech targeting caste and mi-
gration communities in code-mixed Tamil-
English social media content is challenging due
to limited resources and socio-cultural com-
plexities. This paper proposes a multi-scale
hybrid architecture combining classical and
neural representations with hierarchical ensem-
ble learning. We employ advanced prepro-
cessing including transliteration and charac-
ter repetition removal, then extract features
using classical TF-IDF vectors at multiple
scales (512, 1024, 2048) processed through
linear layers, alongside contextual embeddings
from five transformer models-Google BERT,
XLM-RoBERTa (Base and Large), SeanBen-
hur BERT, and IndicBERT. These concatenated
representations encode both statistical and con-
textual information, which are input to multi-
ple ML classification heads (Random Forest,
SVM, etc). A three-level hierarchical ensemble
strategy combines predictions across classifiers,
transformer-TF-IDF combinations, and dimen-
sional scales for enhanced robustness. Our
method scored an F1-score of 0.818, ranking
3rd in the LT-EDI-2025 shared task, showing
the efficacy of blending classical and neural
methods with multi-level ensemble learning
for hate speech detection in low-resource lan-
guages.

Keywords: Caste/Migration-based hate speech de-
tection, Code-mixed text, Transliteration, TF-IDF
Features, Transformer embeddings, Hierarchical
ensemble learning, Low-resource languages

1 Introduction

Hate speech is any kind of communication that
attacks a person or group based on attributes
like caste, religion, race, or other identity factors.
With the advancement of technology and the ad-
vent of social media, individuals can now share
their thoughts with anyone in the world. While
this increased connectivity has many benefits, the

anonymity offered by online platforms has unfor-
tunately facilitated the spread of hateful messages,
particularly those targeting vulnerable groups such
as migrants and specific caste communities. To
make online communities inclusive, it is essential
to identify caste and migration-based hate speech.

Despite significant progress in Natural Language
Processing(NLP) through transformer architectures
(Vaswani et al., 2017) revolutionizing text classifi-
cation tasks, detecting hate speech in low-resource
languages like Tamil poses unique challenges stem-
ming from dialectal diversity and regional varia-
tions. This challenge is further intensified when
detecting specific forms of hate speech, such as
those targeting caste and migration, as these are
often embedded in local socio-cultural nuances and
context. In social media platforms, the texts are
often code-mixed, i.e., English + Tamil, making
detection even more challenging.

To address these challenges, our work presents
a multi-scale hybrid architecture that com-
bines classical Term Frequency-Inverse Document
Frequency(TF-IDF) (Spärck Jones, 1972) features
at multiple scales (512, 1024, and 2048) with con-
textual transformer embeddings. For final classi-
fication, a hierarchical ensemble using majority
voting across models and feature scales was used
to make the model robust and generalizable.

2 Related Work

Early hate speech detection systems relied on rule-
based methods and keyword matching (Clarke
et al., 2023). These methods are unsuitable for
the vast amount of data present today as they lack
contextual understanding. Machine learning algo-
rithms like Support Vector Machines (Kp et al.,
2009) and Logistic Regression (Hosmer Jr et al.,
2013), which used hand-crafted features such as
TF-IDF, n-grams, and Parts of Speech (POS) tags,
emerged later. Although these models improved
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performance, they were ineffective for code-mixed
or culture-specific hate speech (Davidson et al.,
2017).

Deep learning techniques such as RNNs (El-
man, 1990) and LSTMs (Hochreiter and Schmidhu-
ber, 1997), when combined with word embeddings
like Word2Vec (Mikolov et al., 2013) and GloVe
(Pennington et al., 2014), improved context-aware
modeling and reduced the need for manual feature
engineering (Pitsilis et al., 2018). Nevertheless,
they struggled with long-range dependencies and
noisy, code-mixed text. With the emergence of
pre-trained language models such as BERT (De-
vlin et al., 2019a), RoBERTa (Liu et al., 2019),
and multilingual variants like XLM-R (Conneau
et al., 2020a), the performance improved further.
Fine-tuning these pretrained models on hate speech
datasets has consistently yielded better results (Al-
bladi et al., 2025).

In their work, (Roy et al., 2022) used an
ensemble-based approach to detect hate speech in
code-mixed Tamil and Malayalam texts, as the in-
dividual models had a high misclassification rate.
Two ensemble techniques were used: one based
on the average of the outcomes and another us-
ing custom weights. Their ensemble model out-
performed the previously reported state-of-the-art
models, achieving an F1 score of 0.933 on Tamil
and 0.802 for the Malayalam dataset.

In their work, (Sreelakshmi et al., 2024) de-
tected Hate Speech and Offensive Language (HOS)
in low-resource Dravidian CodeMix languages
(Kannada, Malayalam, Tamil). Various multilin-
gual transformer-based embeddings (e.g., MuRIL,
BERT, XLM-R) were combined with traditional
ML classifiers for HOS detection. To address class
imbalance, a cost-sensitive learning approach was
used. Experiments on six datasets showed that
MuRIL + SVM performed best overall.

3 Task and Dataset Description

The goal of this shared task (Rajiakodi et al., 2025)
is to develop a system to detect hate speech tar-
geting caste and migrant communities in code-
mixed social media data, focusing on Tamil, a low-
resource language. The dataset (Rajiakodi et al.,
2024) has three columns: "text", which has the
comments from social media platforms; "id", con-
taining the ID of the comments; and "label", which
is set to 1 for hate speech and 0 for non-hate speech.
The dataset description is provided in Table 1.

Dataset No. of comments
Train 5512
Dev 787
Test 1576
Total 7875

Table 1: Distribution of comments across training, de-
velopment, and test sets

4 Methodology

The approach uses a multi-scale hybrid framework
to identify hate speech in code-mixed Tamil social
media posts. Two preprocessing schemes (with and
without transliteration) are used to handle intrinsic
noise in the data, such as emojis, URLs, inconsis-
tent spacing, repeated characters in transliterated
Tamil words, and code-mixing between Tamil and
English languages. Feature extraction unites TF-
IDF vectors at three dimensions (512, 1024, 2048)
with contextual embeddings of five transformer
models. Such features are then concatenated to
create integrated feature vectors with both statisti-
cal and contextual information. A set of 22 tradi-
tional ML classifiers are trained for each feature
set, and the top 3 models for each were chosen.
A three-level hierarchical ensemble approach em-
ploys majority voting across classifiers, feature sets,
and dimensions to ensure resilient classification by
combining heterogeneous preprocessing schemes,
representation types, and model architectures

4.1 Data Preprocessing

Our data pre-processing pipeline addressed the
challenges of social media text containing code-
mixed Tamil and English content. In the first ap-
proach, without transliteration, newlines were re-
placed with white spaces, emojis were converted
into text i.e. demojization (Kim and Wurster, 2014),
URLs were removed, multiple whitespaces were
replaced with a single space, and then the text was
converted into lowercase.

In the second approach, the same steps were re-
peated, followed by transliteration (Karimi et al.,
2011) of Tamil Unicode characters into their
English equivalents, and repeated characters in
transliterated Tamil words were removed (while
preserving standard English words), and then non-
ASCII characters were removed to maintain con-
sistency.
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Figure 1: Multi-scale architecture for hate speech detection: Three-stage pipeline showing (a) data preprocessing
with dual approaches (with/without transliteration) producing both processed text data and TF-IDF vectors, (b)
transformer models generating contextual embeddings that are combined with reduced TF-IDF features to create
unified Wise Embeddings (WE), and (c) machine learning classifiers processing WE features followed by three-level
hierarchical ensemble voting to produce final hate speech predictions.

4.2 TF-IDF Vectorization

TF-IDF vectorization (S N et al., 2022) was used
to extract features from the text, and its hyperpa-
rameters were optimized using grid search (Hutter
et al., 2019). This resulted in high-dimensional
feature vectors consisting of approximately 22,000
features. As these feature vectors are sparse, Trun-
cated Singular Value Decomposition (SVD) was
applied:

X ≈ UkΣkV
T
k (1)

This decomposition (Halko et al., 2011) was used
to reduce the feature space to three different di-
mensions: 512, 1024, and 2048. These features
were further refined using Feed-Forward Networks
(FFNs) (Rumelhart et al., 1986) to produce com-
pact embeddings of 32, 64, and 128 dimensions
respectively.

4.3 Transformer Embeddings

Five different transformer models were used to
extract contextual embeddings from the prepro-
cessed text. For the models Google BERT (De-
vlin et al., 2019b) and SeanBenhur BERT (Benhur
and Sivanraju, 2021), the input was text prepro-
cessed with transliteration, while for Indic BERT
(Kp et al., 2025), XLM RoBERTa base (Conneau
et al., 2020b), and XLM RoBERTa large, the input

was text preprocessed without transliteration. The
contextual representations were extracted from the
[CLS] token, which serves as an aggregate repre-
sentation of the entire input sequence. The trans-
former models produce embeddings of varying di-
mensions: IndicBERT, XLM RoBERTa Base, and
SeanBenhur BERT generate 768-dimensional em-
beddings, while Google BERT Large and XLM
RoBERTa Large produce 1024-dimensional em-
beddings. These obtained embeddings undergo lin-
ear transformation to achieve target dimensions of
480, 960, and 1920 for the three scales respectively.
Each transformed embedding is then concatenated
with its corresponding FFN-reduced feature vectors
(of dimensions 32, 64, and 128), resulting in unified
representations of 512, 1024, and 2048 dimensions
that capture both statistical and contextual infor-
mation. The unified representations obtained are
hereafter referred to as Wise Embeddings (WE).

4.4 Machine Learning Models

For each of the five feature sets at every dimension
in WE, 22 traditional machine learning classifiers
including Logistic Regression, SVM, Naive Bayes
(McCallum and Nigam, 1998), and Random For-
est Classifier (Breiman, 2001) were trained. From
these, the top three classifiers were selected based
on their validation performance.
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For each feature set and scale, predictions from
the top three classifiers were aggregated using ma-
jority voting to give a single predicted label. Then,
the five resulting predictions for each dimension
(5 BERT models) was again combined using ma-
jority voting to produce a final label per dimen-
sion. Then, a cross-dimensional ensemble was
performed, where the three labels i.e. one from
each WE dimension underwent another round of
majority voting to determine the overall predicted
label.

During the initial transformer training phase,
the Wise Embeddings (WE) are processed through
a final linear layer that maps the 512, 1024, or
2048-dimensional representations to a single out-
put value, optimized using Binary Cross-Entropy
(BCE) (Goodfellow et al., 2016) loss. This linear
layer effectively functions as a linear classifier, con-
straining the learned WE representations to be lin-
early separable in the feature space. However, the
complex nature of code-mixed hate speech detec-
tion often exhibits non-linear patterns that cannot
be adequately captured by linear decision bound-
aries alone.

By applying traditional ML classifiers with inher-
ently non-linear decision boundaries (such as Ran-
dom Forest and SVM with non-linear kernels) to
these linearly-optimized WE features, we introduce
additional modeling capacity to capture complex
patterns in the data. This approach leverages the
pre-trained linear separability while allowing non-
linear classifiers to model intricate relationships
that the original linear layer could not capture. The
ensemble voting across multiple classifiers further
enhances robustness and generalization, particu-
larly beneficial for handling the noisy and hetero-
geneous nature of code-mixed social media text.

5 Result and Analysis

The model’s performance was assessed using the
F1-score (Powers, 2011), which is defined in Equa-
tion 2.

F1macro =
1

C

C∑

i=1

2× Pi ×Ri

Pi +Ri
(2)

The results of the best-performing models for dif-
ferent dimensions (512, 1024, and 2048) are sum-
marized in Table 2 and the results of different en-
sembles are given in Table 3. The ensemble of
the three different dimensions achieved the highest
F1-score of 0.85 in the dev set.

Dim Transformer Best Model F1

512

Google BERT RF 0.80
IndicBERT RF 0.81
SeanBenhur BERT XGBoost 0.81
XLM-R Base RF 0.81
XLM-R Large Extra Trees 0.81

1024

Google BERT SVM 0.81
IndicBERT RF 0.83
SeanBenhur BERT RF 0.82
XLM-R Base Nu-SVM 0.83
XLM-R Large RF 0.83

2048

Google BERT Gradient Boosting 0.84
IndicBERT Ridge Regression 0.82
SeanBenhur BERT Nu-SVM 0.83
XLM-R Base RF 0.84
XLM-R Large RF 0.83

Table 2: PerformancemMetrics of the combinations

Ensemble Type F1-score
512 dim models 0.81
1024 dim models 0.82
2048 dim models 0.84

Cross-dimensional ensemble 0.85

Table 3: Performance metrics of multi-scale ensembles

5.1 Comparison

Our proposed methodology using Wise Embed-
dings (WE), achieved an F1-score of 0.81827 on
the test set, securing 3rd rank in the shared task.
The F1 scores of the top five performing teams in
the shared task are summarized in Table 4.

Rank Team Name F1-score
1 CUET_N317 0.88105
2 CUET’s_white_walkers 0.86289
3 Wise 0.81827
4 CUET_blitz_aces 0.81682
5 hinterwelt 0.80916

Table 4: Top 5 Teams ranked based on F1-score

6 Conclusion

The present work demonstrates the strength of
combining neural and conventional representations
through a multi-level ensemble approach for caste
and migration-based hate speech detection in code-
mixed Tamil text. The approach highlights the
importance of employing diverse feature represen-
tations in addressing challenging NLP problems in
low-resource languages.
Github Source code: https://github.com/
Ganesh2609/CasteMigrationHateSpeech
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7 Limitations

Even though the proposed pipeline performed well,
there are a few limitations, which are as follows:

1. The relatively small dataset (7,875 comments
in total) may limit the model’s ability to gen-
eralize across the full spectrum of hate speech
variations in Tamil social media content.

2. Data inconsistency exists where identical com-
ments appear in both training and develop-
ment sets with conflicting labels, potentially
compromising the model’s learning process
and evaluation reliability.

3. Label quality issues are present in the dataset,
where some clearly hateful content is labeled
as non-hate speech, while certain benign com-
ments are marked as hate speech. This annota-
tion ambiguity, which is challenging even for
human annotators, introduces noise that may
affect model performance.
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A Training Performance Metrics

This appendix presents the training and validation
performance metrics for all transformer models
across the three dimensional scales (512, 1024, and
2048). Each figure shows the loss, accuracy, and
F1-score curves during the training process.
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Figure 2: Training and validation metrics for Google
BERT with 512-dimensional embeddings.

Figure 3: Training and validation metrics for IndicBERT
with 512-dimensional embeddings.

Figure 4: Training and validation metrics for SeanBen-
hur BERT with 512-dimensional embeddings.

Figure 5: Training and validation metrics for XLM-
RoBERTa Base with 512-dimensional embeddings.

Figure 6: Training and validation metrics for XLM-
RoBERTa Large with 512-dimensional embeddings.

Figure 7: Training and validation metrics for Google
BERT with 1024-dimensional embeddings.
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Figure 8: Training and validation metrics for IndicBERT
with 1024-dimensional embeddings.

Figure 9: Training and validation metrics for SeanBen-
hur BERT with 1024-dimensional embeddings.

Figure 10: Training and validation metrics for XLM-
RoBERTa Base with 1024-dimensional embeddings.

Figure 11: Training and validation metrics for XLM-
RoBERTa Large with 1024-dimensional embeddings.

Figure 12: Training and validation metrics for Google
BERT with 2048-dimensional embeddings.

Figure 13: Training and validation metrics for In-
dicBERT with 2048-dimensional embeddings.
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Figure 14: Training and validation metrics for SeanBen-
hur BERT with 2048-dimensional embeddings.

Figure 15: Training and validation metrics for XLM-
RoBERTa Base with 2048-dimensional embeddings.

Figure 16: Training and validation metrics for XLM-
RoBERTa Large with 2048-dimensional embeddings.
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