@inproceedings{kangur-etal-2025-multireflect,
title = "{M}ulti{R}eflect: Multimodal Self-Reflective {RAG}-based Automated Fact-Checking",
author = "Kangur, Uku and
Agrawal, Krish and
Singh, Yashashvi and
Sabir, Ahmed and
Sharma, Rajesh",
editor = "Kriz, Reno and
Murray, Kenton",
booktitle = "Proceedings of the 1st Workshop on Multimodal Augmented Generation via Multimodal Retrieval (MAGMaR 2025)",
month = aug,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.magmar-1.1/",
doi = "10.18653/v1/2025.magmar-1.1",
pages = "1--17",
ISBN = "979-8-89176-280-0",
abstract = "In this work, we introduce MultiReflect, a novel multimodal self-reflective Retrieval Augmented Generation (RAG)-based automated fact-checking pipeline. MultiReflect is designed to address the challenges of rapidly outdated information, limitations in human query capabilities, and expert knowledge barriers in fact-checking. Our proposed pipeline leverages the latest advancements in Large Language Models (LLMs) and Retrieval Augmented Generation (RAG) to enhance fact verification across text and images. Specifically, by integrating multimodal data processing with RAG-based evidence reflection, our system improves the accuracy of fact-checking by utilizing internet-sourced verification. We evaluate our results on the VERITE benchmarks and using several multimodal LLMs, outperforming baselines in binary classification."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kangur-etal-2025-multireflect">
<titleInfo>
<title>MultiReflect: Multimodal Self-Reflective RAG-based Automated Fact-Checking</title>
</titleInfo>
<name type="personal">
<namePart type="given">Uku</namePart>
<namePart type="family">Kangur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Krish</namePart>
<namePart type="family">Agrawal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yashashvi</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ahmed</namePart>
<namePart type="family">Sabir</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rajesh</namePart>
<namePart type="family">Sharma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop on Multimodal Augmented Generation via Multimodal Retrieval (MAGMaR 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Reno</namePart>
<namePart type="family">Kriz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kenton</namePart>
<namePart type="family">Murray</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-280-0</identifier>
</relatedItem>
<abstract>In this work, we introduce MultiReflect, a novel multimodal self-reflective Retrieval Augmented Generation (RAG)-based automated fact-checking pipeline. MultiReflect is designed to address the challenges of rapidly outdated information, limitations in human query capabilities, and expert knowledge barriers in fact-checking. Our proposed pipeline leverages the latest advancements in Large Language Models (LLMs) and Retrieval Augmented Generation (RAG) to enhance fact verification across text and images. Specifically, by integrating multimodal data processing with RAG-based evidence reflection, our system improves the accuracy of fact-checking by utilizing internet-sourced verification. We evaluate our results on the VERITE benchmarks and using several multimodal LLMs, outperforming baselines in binary classification.</abstract>
<identifier type="citekey">kangur-etal-2025-multireflect</identifier>
<identifier type="doi">10.18653/v1/2025.magmar-1.1</identifier>
<location>
<url>https://aclanthology.org/2025.magmar-1.1/</url>
</location>
<part>
<date>2025-08</date>
<extent unit="page">
<start>1</start>
<end>17</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MultiReflect: Multimodal Self-Reflective RAG-based Automated Fact-Checking
%A Kangur, Uku
%A Agrawal, Krish
%A Singh, Yashashvi
%A Sabir, Ahmed
%A Sharma, Rajesh
%Y Kriz, Reno
%Y Murray, Kenton
%S Proceedings of the 1st Workshop on Multimodal Augmented Generation via Multimodal Retrieval (MAGMaR 2025)
%D 2025
%8 August
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-280-0
%F kangur-etal-2025-multireflect
%X In this work, we introduce MultiReflect, a novel multimodal self-reflective Retrieval Augmented Generation (RAG)-based automated fact-checking pipeline. MultiReflect is designed to address the challenges of rapidly outdated information, limitations in human query capabilities, and expert knowledge barriers in fact-checking. Our proposed pipeline leverages the latest advancements in Large Language Models (LLMs) and Retrieval Augmented Generation (RAG) to enhance fact verification across text and images. Specifically, by integrating multimodal data processing with RAG-based evidence reflection, our system improves the accuracy of fact-checking by utilizing internet-sourced verification. We evaluate our results on the VERITE benchmarks and using several multimodal LLMs, outperforming baselines in binary classification.
%R 10.18653/v1/2025.magmar-1.1
%U https://aclanthology.org/2025.magmar-1.1/
%U https://doi.org/10.18653/v1/2025.magmar-1.1
%P 1-17
Markdown (Informal)
[MultiReflect: Multimodal Self-Reflective RAG-based Automated Fact-Checking](https://aclanthology.org/2025.magmar-1.1/) (Kangur et al., MAGMaR 2025)
ACL