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Abstract

Recent studies indicate that LLM-based Multi-
Agent Systems (MAS) encounter scalability
challenges in complex mathematical problem-
solving or coding tasks, exhibiting issues such
as inconsistent role adherence and ineffective
inter-agent communication. Moreover, the
performance advantages of LLM-based MAS
over a single agent employing test-time scal-
ing methods (e.g., majority voting) remain
marginal. This raises a critical question: Can
LLM-based MAS scale effectively to achieve
performance comparable to standalone LLMs
or even Large Reasoning Models (LRMs) un-
der optimal test-time compute? In this paper,
we conduct a preliminary investigation into
the scalability of LLM-based MAS for scien-
tific code generation. We propose a simple yet
scalable two-player framework based on itera-
tive critic-in-the-loop refinement. Our experi-
ments demonstrate that a minimalist actor-critic
framework based on DeepSeek-V3 can out-
perform DeepSeek-R1 under equivalent com-
putational budgets. Surprisingly, more com-
plex frameworks fail to yield significant gains.
These findings corroborate recent insights into
multi-agent system limitations and highlight
the importance of scalable workflows for ad-
vancing scientific code generation.

1 Introduction

In recent years, LLM-based Multi-Agent Systems
(MAS) (Guo et al., 2024) have demonstrated sig-
nificant potential in complex problem-solving and
system coding tasks (Qian et al., 2023; Huang et al.,
2023; Qi et al., 2023; Islam et al., 2024; Parmar
et al., 2025). In such systems, each agent is as-
signed a specific role, working collaboratively to
achieve predefined objectives, which mirrors hu-
man teamwork in real-world scenarios.
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However, recent studies (Cemri et al., 2025) re-
veal that LLM-based MAS often struggle with com-
plex tasks due to issues such as specification ambi-
guities, inter-agent misalignment, and inadequate
task verification. Furthermore, with the growing
interest in Test-Time Scaling (TTS) (Zhang et al.,
2025b), where performance improves via inference-
time compute (e.g., majority voting or best-of-N
sampling with reward models) (Snell et al., 2024;
Liu et al., 2025; Zhao et al., 2025), the advantages
of LLM-based MAS over single-agent systems
with TTS diminish under equivalent computational
budgets (Zhang et al., 2025a).

Meanwhile, Large Reasoning Models (LRMs)
(e.g., DeepSeek-R1 (Guo et al., 2025), OpenAl-
ol (Jaech et al., 2024)) exhibit superior TTS ca-
pabilities through extended chain-of-thought rea-
soning. Yet, these models suffer from high latency
and excessive token costs. This raises a critical
question: Can we develop a scalable LLM-based
MAS that outperforms standalone LLMs or LRMs
with TTS while maintaining efficiency?

In this paper, we investigate this challenge in
scientific code generation (SciCode (Tian et al.,
2024)). Unlike mathematical problems, apply-
ing TTS (e.g., majority voting) to code generation
is inherently difficult. Instead, critique and self-
reflection which are strengths of LRMs, play a
pivotal role. To address this, we propose a critic-
in-the-loop framework to enhance the evaluative
capabilities of LLM-based MAS.

Our experiments on the SciCode benchmark
demonstrate that a generator-critic framework (us-
ing DeepSeek-V3 (Liu et al., 2024)) outperforms
standalone DeepSeek-R1 while consuming fewer
tokens. Notably, performance improves further
with additional critic iterations, suggesting our
framework itself serves as an effective TTS strat-
egy. We also explore a three-agent MAS but find no
significant gains over the simpler generator-critic
approach. Finally, we analyze failure cases to pro-
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Figure 1: Overview of Generator-Critic Framework.

vide insights for future research.

* We propose a lightweight generator-critic
framework that achieves superior performance
in scientific code generation compared to
LRMs, while reducing token costs by 75%.

* We demonstrate that iterative critic refinement
inherently functions as a compute-efficient
TTS strategy, unlike traditional voting-based
approaches ill-suited for code generation.

Through ablation studies and failure analy-
sis, we identify key limitations of multi-agent
systems (e.g., role confusion in three-agent
setups) and provide guidelines for scalable
MAS design in the future works.

2 Methodology

2.1 Iterative Generator-Critic Framework

As illustrated in Figure 1, the framework comprises
two specialized agents: Generator and a Critic.

Generator. The Generator initially produces
code based on the task description. If the code fails
verification, it utilizes feedback containing both the
Critic’s natural-language critique and the erroneous
code to generate an improved version.

Critic. The Critic plays a crucial role in the
framework by identifying errors in faulty code
and providing natural-language feedback. Given a
faulty code and a simple failure description (e.g., an
error or timeout), it generates nuanced and specific
critiques. Unlike scalar rewards, these critiques are
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more informative, thereby guiding the Generator’s
revisions more effectively (Shinn et al., 2023).

Iterative Refinement. The framework em-
ploys a cyclic criticize — correct — criticize
loop (Madaan et al., 2023) to iteratively refine code
until a stopping condition (e.g., successful vali-
dation or maximum iterations) is met. Formally,
given a model M and an input problem description
x, the Generator M, first produces an initial solu-
tion og,which is then verified by a code interpreter.
If verification fails, the Critic and Generator engage
in iterative refinement: (1)the Critic M analyzes
the previous output o;_; to generate critique c.
(2)The Generator M, synthesizes o;_1 and ¢, to
produce an optimized solution oy, that may address
previous errors. (3)The new code o, undergoes
revalidation - if successful, the loop terminates;
otherwise, the process continues.



Subproblem Main Problem

Model Pass@1 A Pass@1 A
Baselines (Single-Agent) (Tian et al., 2024)
GPT-40 25.0 - 1.5 -
DeepSeek-V3 23.7 - 3.1 -
Claude3.5-Sonnet 26.0 - 4.6 -
DeepSeek-R1 28.5 - 4.6 -
OpenAl-ol-preview 28.5 - 7.7 -
OpenAlI-03-mini 333 - 9.2 -

" GPT-40 (Our) 22 - 15 -
DeepSeek-V3 (Our) 25.3 - 3.1 -
DeepSeek-R1 (Our) 31.6 - 4.6 -

Generator-Critic (Two-Agent) (§ 2.1)
1 iteration
GPT-40 25.0 12.8 1.5 10.0
DeepSeek-V3 28.5 13.2 3.1 1 0.0
4 iterations
GPT-40 27.4 15.2 4.6 13.1
DeepSeek-V3 32.6 173 6.2 13.1

Table 1: Main Results on Test Set.

2.2 Generator-Critic-Examiner Framework

Building upon the iterative multi-agent framework
described above, we introduce an Examiner Agent
to enhance the system’s error detection and correc-
tion capabilities, as shown in Figure 2.

Examiner. Leveraging the chain-of-thought
(Wei et al., 2022) reasoning capabilities of large
language models, the examiner’s primary function
is to generate task-specific test cases based on the
problem description. Each generated test case con-
tains three essential components: (1) input parame-
ters compliant with the problem requirements, (2)
expected outputs representing correct implemen-
tation behavior, and (3) assertion statements for
automated verification. To improve the output pre-
diction accuracy, we implement a self-consistency
mechanism (Wang et al., 2022; Prasad et al., 2025),
where multiple predictions are generated for each
test input and the final output is determined via
majority voting (detailed in Appendix A).

Test Case Verification Process. The generated
test cases are used to internally verify the code pro-
duced by the Generator during the iterative refine-
ment process. The verification results, comprising
both successful and failed test cases with corre-
sponding error reports, serve as crucial feedback
for the Critic’s reflective analysis. If all test cases
pass, the iteration terminates and the code is sub-
sequently verified using the gold tests provided by
the dataset, with this result determining the final
accuracy assessment.
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Figure 3: Performance vs. Token Cost between
DeepSeek-R1 and iterative Generator-Critic (GC) using
DeepSeek-V3. The numbers in parentheses indicate the
iteration counts.

3 Experiments

3.1 Experimental Setup

We evaluate our framework primarily on Sci-
Code (Tian et al., 2024), a scientist-curated coding
benchmark comprising 338 subproblems derived
from 80 challenging main problems across 16 di-
verse natural science disciplines. Our implementa-
tion builds upon the official codebase ', with eval-
uations conducted using GPT-40 and DeepSeek-
V1/R1 on both test and validation sets. For baseline
comparisons, we incorporate official leaderboard
results > for GPT-40, Claude, and OpenAl-ol,
while reproducing GPT-40 and DeepSeek-R1/V1
results to ensure consistent evaluation metrics.

3.2 Main Results

Table 1 and table 2 present the performance com-
parison of different methods, which reveal:
Effectiveness of the Critic Agent. When
employing DeepSeek-v3 as the base model, the
Generator-Critic framework achieves a perfor-
mance improvement (A) of 3.2% after one iter-
ation on the test set, which further increases to
7.3% after four iterations. Notably, the Generator-
Critic framework consistently outperforms single-
agent approach across all evaluated base models,
demonstrating the generalizability of the frame-
work. Moreover, the DeepSeek-V3-based frame-
work surpasses the performance of DeepSeek-R1
after four iterations, proving that our multi-agent

1ht’cps: //github.com/scicode-bench/SciCode
2https://scicode-bench.github.io/leaderboard/
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approach using general-purpose LLMs is highly
competitive.

Enhanced Main Problem Resolution. The
framework particularly excels in solving main prob-
lems in SciCode, which require correct solutions
for all subproblems. The iterative critique process
not only rectifies errors in the current code but also
facilitates the resolution of subsequent subprob-
lems - and consequently the main problem - since
each subproblem’s correctness impacts those that
follow. This capability significantly aids in solving
the benchmark’s most challenging aspects.

Token Cost Comparison. Figure 3 compares
the token consumption between two approaches: 1)
DeepSeek-R1 for code and reasoning outputs, and
2) the iterative Generator-Critic using DeepSeek-
V3 for both Generator’s code outputs and Critic’s
critique outputs. The results show that the to-
ken consumption of DeepSeek-R1 substantially ex-
ceeds that of the Generator-Critic approach, with
a substantial difference of 279,605 tokens on the
validation set even after four iterations. Despite
this, both approaches achieve comparable perfor-
mance, with our framework even demonstrating
superior results (Figure 6). These findings col-
lectively indicate the advantages of the Generator-
Critic framework in terms of both efficiency and
task performance.

Number of Iterations. We examine the efficacy
of iterative refinement in both the Generator-Critic
and Generator-Critic-Examiner. As shown in Fig-
ure 4(a), which presents the pass@1 performance
progression on the test set using GPT-4o, iterative
refinement consistently improves the framework
performance. However, marginal gains diminish
as the number of iterations increases, with 5-6
iterations yielding the majority of achievable im-
provements.

3.3 Failure Analysis

Although the Generator-Critic-Examiner outper-
formed the baselines, it performed worse than the
Generator-Critic. This indicates that the Examiner
failed to enhance the critic’s reflective capabilities.
Upon analyzing the test cases generated by the Ex-
aminer, we observed substantial inaccuracies in its
output predictions. Even with majority voting im-
plemented, the Examiner’s predictions remained
predominantly incorrect. These errors adversely
affected the framework by introducing misleading
guidance during refinement, ultimately impairing
the efficacy of the criticism mechanism.
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Subproblem Main Problem

Model Pass@1 A Pass@1 A
Baselines (Single-Agent)
GPT-40 44.0 - 333 -
DeepSeek-V3 48.0 - 46.7 -
DeepSeek-R1 50.0 - 46.7 -
Generator-Critic (Two-Agent) (§ 2.1)

1 iteration
GPT-40 48.0 1 4.0 333 10.0
DeepSeek-V3 60.0 112.0 40.0 10.0
DeepSeek-R1 50.0 10.0 46.7 10.0
4 iterations
GPT-40 50.0 16.0 40.0 16.7
DeepSeek-V3 62.0 1 14.0 46.7 16.7
DeepSeek-R1 56.0 16.0 53.3 16.7

Generator-Critic-Examiner (Three-Agent) (§ 2.2)
1 iteration

GPT-40 48.0 1 4.0 333 1 0.0
DeepSeek-V3 50.0 1 2.0 40.0 10.0
4 iterations

GPT-40 48.0 1 4.0 333 10.0
DeepSeek-V3 54.0 16.0 40.0 16.7

Table 2: Results on Validation Set.

4 Conclusion

We propose a lightweight generator-critic frame-
work that enhances LLM-based multi-agent sys-
tems for scientific code generation. Our approach
outperforms standalone Large Reasoning Models
while reducing computational costs, demonstrat-
ing that iterative critique inherently serves as an
efficient test-time scaling strategy. Experiments re-
veal diminishing returns with complex multi-agent
setups, suggesting simplicity is key for scalability.
These findings offer practical guidelines for de-
ploying efficient LLM-based systems in resource-
constrained scenarios.

Limitations

Our framework is evaluated solely on scientific
code generation (SciCode) tasks. Its effectiveness
on other domains (e.g., natural language reasoning
or mathematical proof generation) remains unveri-
fied, as different problem types may require distinct
agent interaction patterns.

The performance gains are demonstrated using
specific LLMs (DeepSeek-V3, GPT-40). Results
may vary with smaller or less capable base models,
suggesting our approach may be constrained by the
underlying model’s core capabilities.

While we show computational efficiency gains,
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Figure 4: Iterations in Generator-Critic and Generator-
Critic-Examiner.

the critic-in-the-loop approach introduces sequen-
tial processing latency. This creates a fundamental
tension between token efficiency and real-time re-
sponsiveness that may limit deployment in latency-
sensitive applications.
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A Details of Methodology

Here, we elaborate on the majority voting mecha-
nism implemented for test cases generation within
the Generator-Critic-Examiner framework. First,
the Examiner generates input parameters for the
function based on the problem description. Next,
the agent is invoked multiple times (in our imple-
mentation, five repetitions are used) to generate
test case outputs through diverse Chain-of-Thought
(CoT) reasoning processes. Finally, we tally the
frequency of identical output values and select the
most common one as the final test case output.This
process is shown in Figure 5.

B System Prompts

The prompts for both the Generator-Critic and the
Generator-Critic-Examiner are presented in Tables
3,4,5and 6.

C Case Study

Here,we provide representative success and failure
cases analysis for both the Generator-Critic and the
Generator-Critic-examiner.
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C.1 Success Cases

Table 7 presents a successful application of the
Generator-Critic framework. In this case,the sub-
problem p; was corrected through critique-based
optimization, and this correction subsequently re-
vealed the correctness of the following two sub-
problem p;+1 and p;y2. This indicates that the
initial generated codes for the subsequent subprob-
lems p;41 and p;42 was, in fact, correct; however,
due to the error in the preceding subproblem p;,
their evaluation resulted in a false failure. By cor-
recting p; within the Generator-Critic, we were
able to verify the true correctness of the p; 1 and
pi+2. This case underscores a key advantage of
the Generator-Critic in handling complex, stepwise
scientific code generation: accurate evaluation and
correction of later steps which require resolving
errors in earlier ones.



Table 8 presents the test cases generated by the Table 10 presents test cases demonstrating the
Examiner for a faulty code which has been success-  Examiner’s failure. In these cases, the majority vot-
fully corrected. These test cases are particularly  ing mechanism fails to identify a consensus among
valid because the final outputs exhibit a high fre-  the predicted outputs, rendering it ineffective.
quency, indicating their reliability.

C.2 Failure Cases

Table 9 presents an example in which the errors
persist even after reaching the maximum number of
iterations in the Generator-Critic framework. Over
four iterations, the Critic consistently identified
similar error causes, with no significant variation
observed.

EXAMINER IN GENERATOR-CRITIC-EXAMINER FRAMEWORK

You are an Al coding assistant that can write unique, diverse, and intuitive unit tests for a Python function.

Your job is to generate unit tests that

1.Is valid input based on the function description, i.e., an acceptable input consistent with function description that a correct
program should be able to execute.

2. The output enclosed in . and is faithful to the function description, i.e., the output of the unit test is consistent with what a
correct program would return.

3. Breaks the code if there is a wrong implementation code based on the function description, i.e., does not execute to the
correct output and brings out its mistakes and vulnerabilities.

Provide a reasoning for your answer and identify a general hypothesis or rationale identifying the potential cause of error.
Then provide input and output of the unit test consistent with the pattern (hypothesis) you have identified. Note: - that you
MUST directly write ALL input arguments of the function in the correct order. Skip writing any names of arguments. -Make
sure that hidden associations are satisfied between input arguments. -Make sure that input arguments will not cause a correct
program to perform illegal evaluation, such as division by zero encountered in divide or invalid value encountered in scalar
add. -You must give the specific value of the outputs. Do not include ellipses or variables without defined specific values in
the output. - you MUST enclose the unit test inputs and outputs in. -The inputs and outputs can only be built using the numpy
library. -Do not use undefined variables and functions. -Unit tests can only use libraries in dependencies and cannot use other
libraries. -Unit tests are independent and cannot use data from each other. -Make sure the logic of the unit test is correct.
-You must generate more than four tests.

## Function Definition:

{func_sig}

## Dependencies:

{dependencies}

Respond strictly in the format below:

## Hypothesis

<step-by-step reasoning >

Error Pattern: <an identified pattern of inputs that yields erroneous or incorrect outputs

## Unit Test X:

<where X is the unit test number.>

#i## Input Arguments

<step-by-step reasoning for constructing a unit test that fits the error pattern identified above and is valid as per the function
description >

Arguments:

{function_header}(< all arguments >)

### Output

<step-by-step reasoning for what a correct function_header would execute to based on the function description and your
input above. Make sure your data type of the final answer matches the expected output type of the function. Give the specific
output directly. Do not use assignment statements and do not provide the code for the calculation process. >

Output:

<your final answer.>

### Comparison

<Must use the np.allclose function to compare whether the result of the function matches the output above through the ‘assert’
statement. The parameter atol of the np.allclose function is set according to the number of digits of the expected output.
Write ALL input arguments of the function in the correct order, do not omit input arguments or output. If the function has
multiple outputs, compare each output one by one. >

Comparison:

<your code for assert>

Table 3: Prompt for Examiner in Generator-Critic-Examiner.
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CRITIC IN GENERATOR-CRITIC-EXAMINER FRAMEWORK

You are a Python programming assistant.

You will be given a function implementation and a series of unit tests.The implementation was written under specific
requirements and guidance, which are also provided for you. This function implementation is a part of the solution to the
complete problem. Implementing it may require calling the code of the preceding steps, which is also provided to you in the
requirements and guidance section. Your goal is to write a few sentences to explain why your implementation is wrong as
indicated by the tests. You will need this as a hint when you try again later. Only provide the few sentence description in your
answer, not the implementation. Only focus on the current implementation, not the preceding steps.

# Requirements and guidance for writing the current function implementation:

{prompt}

# current function implementation:

{code}

# preceding steps:

{previous_code}

# unit test results:

{feedback}

# reflection:

Table 4: Prompt for Critic in Generator-Critic-Examiner.

CRITIC IN GENERATOR-CRITIC FRAMEWORK

You are a Python programming assistant.

You will be given a function implementation and the problem with code(the function implementation with test cases)
execution .The implementation was written under specific requirements and guidance, which are also provided for you. This
function implementation is a part of the solution to the complete problem. Implementing it may require calling the code of
the preceding steps, which is also provided to you. Your goal is to write a few sentences to explain why your implementation
is wrong as indicated by the tests. You will need this as a hint when you try again later. Only provide the few sentence
description in your answer, not the implementation. Only focus on the current implementation, not the preceding steps.

# Requirements and guidance for writing the current function implementation:

{prompt}

# current function implementation:

{code}

# preceding steps:

{previous_code}

# problem with code execution:

{type}

# reflection:

Table 5: Prompt for Critic in Generator-Critic.

GENERATOR IN GENERATOR-CRITIC FRAMEWORK

You are a Python writing assistant.

You will be given your past function implementation, the problem with code(the function implementation with test cases)
execution, and a hint to change the implementation appropriately. The past function implementation was written under the
requirements and guidance, your improved implementation should be also under the requirements and guidance. DO NOT
write the same implementation as the past function implementation. Write your full implementation.

# Requirements and guidance for writing the function implementation:

{prompt}

# past function implementation:

{cur_code}

#problem with code execution:

{type}

# hint:

{reflection}

# improved implementation:

Table 6: Prompt for Generator to correct in Generator-Critic.
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CASE STUDY: GENERATOR-CRITIC FRAMEWORK

Problem:

Write down the matrix, B, that transforms (h, k, [) coordinates from the reciprocal lattice system to (¢, gy, g-) coordinates
in the right-handed Cartesian system. Let’s assume they share an identical origin, with &*//4* and 2* //(a* x b*). The
direct lattice parameters (a, b, ¢, o, 8, y) are given in units of A and degree. Additionally, we will follow the convention
a; -b; = d;;, with a; and b; representing the primitive vectors of crystal lattice and reciprocal lattice respectively Background
The reciprocal lattice vectors b; are given by:

a; X ag

bi=—2 2%k
ai-(aj Xak)

Critique:

The implementation is incorrect because it doesn’t properly account for the geometric transformation from detector coordinates
to lab coordinates. The calculation of ks, , is wrong in how it handles the direction components - it should use trigonometric
relationships based on the angles formed by the pixel positions relative to the beam center, not just simple divisions.
Additionally, the normalization of the scattered beam vector is incorrect as it doesn’t properly maintain the magnitude of
1/wavelength for k. The current approach mixes coordinate systems incorrectly and doesn’t properly represent the scattering
geometry.

Improved Implementation:

def g_cal(p, b_c, det_d, p_s, wl):
# Convert all distances to consistent units (angstroms)
det_d_ang =det_d * 1e7 # mm to angstrom
p_s_ang =p_s * 1e7 # mm to angstrom
# Unpack pixel coordinates and beam center
X, y=p
Xc,yc=b_c
# Calculate displacement from beam center in detector coordinates (in angstroms)
dx = (x - xc) * p_s_ang # along -y direction in lab frame
dy = (y - yc) * p_s_ang # along -z direction in lab frame
# Calculate the scattering angle components
r = np.sqrt(det_d_ang**2 + dx**2 + dy**2) # total distance from sample to pixel
sin_theta_x = dx r # angle component in x-y plane
sin_theta_y = dy r # angle component in x-z plane
cos_theta = det_d_ang r # main scattering angle component
# Incident wavevector (along +x in lab frame)
k_i = np.array([1/wl, 0, 0])
# Scattered wavevector (must have magnitude 1wl)
k_s = (Iwl) * np.array([
cos_theta,
-sin_theta_x, # negative because dx is along -y
-sin_theta_y # negative because dy is along -z
D
# Momentum transfer Q = k_s - k_i
Q=ks-k.i
# Return as column vector
return Q.reshape((3, 1))

Evaluation Result:
Correct this subproblem successfully, with the next two subsequent subproblems also becoming wright!

Table 7: Success Example of Generator-Critic.
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CASE STUDY: GENERATOR-CRITIC-EXAMINER FRAMEWORK

Unit Test 1:
# Input Arguments
orthogonalize(np.array([[1, O, 1], [1, 1, 0], [0, 1, 1]], dtype=float))

# Predicted Outputs by different CoT

Output 1: np.array([[0.70710678, -0.40824829, 0.57735027], [0.70710678, 0.40824829, -0.57735027], [0., 0.81649658,

%ﬁz;ifg%gg)).array([[ 0.70710678, -0.40824829, 0.57735027], [ 0.70710678, 0.40824829, -0.57735027],[ 0. , 0.81649658,

%iz;ifgfgg)).array([[ 0.70710678, -0.40824829, 0.57735027],[ 0.70710678, 0.40824829, -0.57735027],[ 0. , 0.81649658,

%flzlz?li(é)lzjrﬂ)).array([[ 0.70710678, -0.40824829, 0.57735027],[ 0.70710678, 0.40824829, 0.57735027],[ 0. , 0.81649658,

g)zl;gz%zgg);array([[ 0.70710678, -0.40824829, 0.577350271,[ 0.70710678, 0.40824829, -0.57735027],[ 0. , 0.81649658,
577 711

# Majority Output and the Frequency

Final Output: np.array([[0.70710678, -0.40824829, 0.57735027], [0.70710678, 0.40824829, -0.57735027], [0., 0.81649658,
0.5773502711)

Frequency: 80%

Unit Test 2:
# Input Arguments
orthogonalize(np.array([[1, 1], [0, 1]], dtype=float))

# Predicted Outputs by different CoT

Output 1: np.array([[1., 0.], [0., 1.]])

Output 2: np.array([[1., 0.], [-0., 1.]], dtype=float)
Output 3: np.array([[1., 0.], [0., 1.]])

Output 4: np.array([[1., 0.], [0., 1.]])

Qutput 5: np.array([[1., 0.], [0., 1.]])

# Majority Output and the Frequency
Final Output:np.array([[1., 0.], [0., 1.]])
Frequency: 100%

Unit Test 3:
# Input Arguments
orthogonalize(np.array([[2, 0], [0, 3]], dtype=float))

# Predicted Outputs by different CoT

Output 1: np.array([[1., 0.], [0., 1.]])

Output 2: np.array([[1., 0.], [-0., 1.]])

Output 3: np.array([[1., 0.], [0., 1.]])

Output 4: np.array([[1., 0.], [0., 1.]])

Qutput 5: np.array([[1., 0.], [0., 1.]], dtype=float)

# Majority Output and the Frequency
Final Output:np.array([[1., 0.], [0., 1.]])
Frequency: 100%

Table 8: Success Example of Examiner.
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CASE STUDY: GENERATOR-CRITIC FRAMEWORK

Problem:

Now write a function to analyze any damped, driven pendulum system to understand its dynamic behavior under various
conditions. Your function should:

Sweep different timesteps to find the optimized timestep that balances accuracy and time efficiency.

2. Output the trajectory

The combined metric for finding the optimized time should penalize higher computational times while rewarding lower errors.
To better reflect this, we can use a combined metric such as:

Metric = GTE x v Time

Global Truncation Error (GTE) is estimated using the step-doubling method. This way, longer computation times will have a
more significant penalty, while still prioritizing low errors.

Critique: 1 iteration

The implementation is incorrect because it does not properly handle the step-doubling method for estimating the Global
Truncation Error (GTE). Specifically, the error estimation is only comparing the final state of the trajectory with the half-
timestep trajectory, which does not accurately represent the cumulative error over the entire time span. Additionally, the
combined metric calculation does not account for potential numerical instabilities or edge cases, such as when the timestep is
too large or too small. The current approach may lead to suboptimal timestep selection due to these inaccuracies in error
estimation and metric computation.

Critique: 2 iterations

The implementation fails because the error calculation in the step-doubling method is incorrect. The current approach
compares trajectories of different lengths by taking every other point from the finer trajectory, but this doesn’t properly
account for the time alignment between the two solutions. Additionally, the error normalization (dividing by sqrt(min_length))
may not appropriately scale the error for comparison across different timesteps. The metric calculation also doesn’t properly
handle cases where the trajectories have different time points due to different step sizes.

Critique: 3 iterations

The current implementation fails because it doesn’t properly handle the time adjustment when calculating trajectories with
different timesteps. The main issues are: 1) The error calculation compares trajectories of potentially different lengths due to
integer rounding of steps, 2) The actual_dt adjustment isn’t properly synchronized between the full and half-step trajectories,
and 3) The metric calculation doesn’t account for cases where trajectories become significantly misaligned in time due to step
size adjustments. These issues lead to incorrect error estimates and suboptimal timestep selection.

Critique: 4 iterations

The implementation is incorrect because it does not properly handle the time points when comparing trajectories with different
step sizes. The error calculation assumes the trajectories can be directly compared by interpolation, but the interpolation may
not accurately capture the error due to the non-linear nature of the pendulum’s motion. Additionally, the combined metric
(GTE x ,/ Time) may not be correctly weighted, leading to suboptimal timestep selection. The function also does not account
for edge cases where the timestep does not evenly divide the total time interval, potentially causing inaccuracies in the final
trajectory.

Final Implementation:
def pendulum_analysis(g, L, beta, A, alpha, initial_state, t0, tf, min_dt, max_dt, num_timesteps):
timesteps = np.logspace(np.log10(min_dt), np.log10(max_dt), num_timesteps)
best_metric = float(’inf”)
optimized_trajectory = None
for dtin timesteps:
n_steps = int(np.ceil((tf - t0) / dt))
actual_dt = (tf - t0) / n_steps # Adjusted dt to exactly reach tf
start_time = time.time()
[...]
if metric < best_metric:
best_metric = metric
optimized_trajectory = trajectory
return optimized_trajectory

Evaluation Result:
Still wrong.

Table 9: Failure Example of Generator-Ceritic.
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CASE STUDY: GENERATOR-CRITIC-EXAMINER FRAMEWORK

Unit Test 1:

# Input Arguments

sum_real_cross( np.array([1.0, -1.0, 2.0]), np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 1.0, 0.0]]), np.array([[0.0, 0.0, 0.5],
[0.0, 0.5, 0.0]1), np.array([[1, 1, 1], [-1, -1, -1]]), 0.5)

# Predicted Outputs by different CoT
Output 1: -0.577102

Output 2: 3.142

Output 3: 0.1

Output 4: 2.0

Output 5: 0.0

# Majority Output and the Frequency
Final Output: -0.577102
Frequency: 20%

Unit Test 2:
# Input Arguments

sum_real_cross( np.array([1.0, 1.0]), np.array([[1.0, 0.0, 0.0], [2.0, 0.0, 0.0]]), np.array([[0.5, 0.5, 0.5]]), np.array([[O, O, 0]]),
0.2)

# Predicted Outputs by different CoT
Output 1: 0.493671

Output 2: 0.0

Output 3: 0.5

Output 4: 0.9

Output 5: 1.0

# Majority Output and the Frequency
Final Output: 0.493671
Frequency: 20%

Unit Test 3:

# Input Arguments

sum_real_cross( np.array([1.0, -1.0]), np.array([[1.0, 1.0, 1.0], [0.0, 0.0, 0.0]]), np.array([[1.0, 1.0, 1.0], [0.0, 0.0, 0.01]),
np.array([[0, O, 0]]), 0.1)

# Predicted Outputs by different CoT
Output 1: -0.999999

Output 2: 4.107857649106695
Output 3: -0.6065306597

Output 4: -0.1

Output 5: -0.427547

# Majority Output and the Frequency
Final Output:np.array([[1., 0.], [0., 1.]])
Frequency: 20%

Table 10: Failure Example of Examiner.
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