@inproceedings{kanojia-2025-challenge,
title = "Challenge Track: Divide and Translate: Parameter Isolation with Encoder Freezing for Low-Resource {I}ndic {NMT}",
author = "Kanojia, Vaibhav",
editor = "Shukla, Ankita and
Kumar, Sandeep and
Bedi, Amrit Singh and
Chakraborty, Tanmoy",
booktitle = "Proceedings of the 1st Workshop on Multimodal Models for Low-Resource Contexts and Social Impact (MMLoSo 2025)",
month = dec,
year = "2025",
address = "Mumbai, India",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.mmloso-1.12/",
pages = "109--113",
ISBN = "979-8-89176-311-1",
abstract = "We present a direction-specialized neural machine translation framework for ultra-low-resource Indic and tribal languages, including Bhili, Gondi, Mundari, and Santali. Using the NLLB-600M backbone, we freeze the multilingual encoder and fine-tune direction-specific decoders to reduce negative transfer and improve morphological fidelity under severe data scarcity. Our system is trained with leakage-safe splits, bitext reversal augmentation, and memory-efficient mixed-precision optimization. On the official MMLoSo 2025 Kaggle benchmark, we achieve a public score of 171.4 and a private score of 161.1, demonstrating stable generalization in highly noisy low-resource conditions."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kanojia-2025-challenge">
<titleInfo>
<title>Challenge Track: Divide and Translate: Parameter Isolation with Encoder Freezing for Low-Resource Indic NMT</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vaibhav</namePart>
<namePart type="family">Kanojia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop on Multimodal Models for Low-Resource Contexts and Social Impact (MMLoSo 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ankita</namePart>
<namePart type="family">Shukla</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sandeep</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amrit</namePart>
<namePart type="given">Singh</namePart>
<namePart type="family">Bedi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mumbai, India</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-311-1</identifier>
</relatedItem>
<abstract>We present a direction-specialized neural machine translation framework for ultra-low-resource Indic and tribal languages, including Bhili, Gondi, Mundari, and Santali. Using the NLLB-600M backbone, we freeze the multilingual encoder and fine-tune direction-specific decoders to reduce negative transfer and improve morphological fidelity under severe data scarcity. Our system is trained with leakage-safe splits, bitext reversal augmentation, and memory-efficient mixed-precision optimization. On the official MMLoSo 2025 Kaggle benchmark, we achieve a public score of 171.4 and a private score of 161.1, demonstrating stable generalization in highly noisy low-resource conditions.</abstract>
<identifier type="citekey">kanojia-2025-challenge</identifier>
<location>
<url>https://aclanthology.org/2025.mmloso-1.12/</url>
</location>
<part>
<date>2025-12</date>
<extent unit="page">
<start>109</start>
<end>113</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Challenge Track: Divide and Translate: Parameter Isolation with Encoder Freezing for Low-Resource Indic NMT
%A Kanojia, Vaibhav
%Y Shukla, Ankita
%Y Kumar, Sandeep
%Y Bedi, Amrit Singh
%Y Chakraborty, Tanmoy
%S Proceedings of the 1st Workshop on Multimodal Models for Low-Resource Contexts and Social Impact (MMLoSo 2025)
%D 2025
%8 December
%I Association for Computational Linguistics
%C Mumbai, India
%@ 979-8-89176-311-1
%F kanojia-2025-challenge
%X We present a direction-specialized neural machine translation framework for ultra-low-resource Indic and tribal languages, including Bhili, Gondi, Mundari, and Santali. Using the NLLB-600M backbone, we freeze the multilingual encoder and fine-tune direction-specific decoders to reduce negative transfer and improve morphological fidelity under severe data scarcity. Our system is trained with leakage-safe splits, bitext reversal augmentation, and memory-efficient mixed-precision optimization. On the official MMLoSo 2025 Kaggle benchmark, we achieve a public score of 171.4 and a private score of 161.1, demonstrating stable generalization in highly noisy low-resource conditions.
%U https://aclanthology.org/2025.mmloso-1.12/
%P 109-113
Markdown (Informal)
[Challenge Track: Divide and Translate: Parameter Isolation with Encoder Freezing for Low-Resource Indic NMT](https://aclanthology.org/2025.mmloso-1.12/) (Kanojia, MMLoSo 2025)
ACL