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Preface

Welcome to the First Workshop on Multimodal Models for Low-Resource Contexts and Social Impact
(MMLoSo 2025), co-located with IJCNLP-AACL 2025 in Mumbai, India.
This workshop brings together researchers at the intersection of multimodal learning, NLP, and AI for
social good, with a focus on low-resource and underserved settings. We aim to bridge the gap between
the growing capabilities of multimodal machine learning models and the urgent needs of real-world
applications in under-resourced, marginalized, or data-constrained settings.
We received 26 submissions in total. After desk rejecting 2 papers and 1 withdrawal, 23 papers entered
the peer review process. We accepted 14 papers (10 oral presentations and 4 poster presentations) after a
rigorous review process, representing an acceptance rate of 53.8% (14 out of 26 submissions).
The workshop features contributions on learning with missing or incomplete modalities, few-shot and
zero-shot learning in multimodal contexts, multilingual representation learning, ethical and interpretable
AI, and applications in social good including ecological monitoring, public health, language documen-
tation, and crisis response.
We thank all authors for their excellent contributions, our program committee for their thorough reviews,
our keynote speakers for their insights, and our student volunteers for their invaluable assistance in ma-
king this workshop a success.
We hope this workshop fosters collaboration and innovation in developing robust and inclusive multimo-
dal systems that can operate effectively under data constraints for social impact.
MMLoSo 2025 Workshop Organizers
Ankita Shukla, Sandeep Kumar, Amrit Singh Bedi, and Tanmoy Chakraborty
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Abstract

Emotions are a fundamental aspect of artis-
tic expression. Due to their abstract nature,
there is a broad spectrum of emotion realiza-
tion in artworks. These are subject to histori-
cal change and their analysis requires exper-
tise in art history. In this article, we inves-
tigate which aspects of emotional expression
can be detected by current (2025) vision lan-
guage models (VLMs). We present a case
study of three VLMs (Llava-Llama and two
Qwen models) in which we ask these models
four sets of questions of increasing complex-
ity about artworks (general content, emotional
content, expression of emotions, and emotion
symbols) and carry out a qualitative expert eval-
uation. We find that the VLMs recognize the
content of the images surprisingly well and of-
ten also which emotions they depict and how
they are expressed. The models perform best
for concrete images but fail for highly abstract
or highly symbolic images. Reliable recogni-
tion of symbols remains fundamentally difficult.
Furthermore, the models continue to exhibit the
well-known LLM weakness of providing incon-
sistent answers to related questions.

1 Introduction

Emotions are a privileged aspect of artistic ex-
pression in the visual arts (Tan, 2000). Arguably,
many artworks actually address the emotions of
the viewer far more directly than the intellect, in
order to gain privileged access to viewer’s morals,
beliefs, values, and worldview. In fact, for a long
time, the recommendations for the art of persuasive
speech (rhetoric) and those for the visual arts have
been directly related (Barthes, 1977).

In recent years, digital access to artwork has
scaled up considerably and has become an impor-
tant branch of (digital) cultural heritage curation
(Näslund and Wasielewski, 2020). For example,
Prometheus (Dieckmann, 2010) is a distributed
archive which as of now (August 2025) provides

a unified interface to access almost 4 million im-
ages from art, culture, and history. Such archives
offer the opportunity for ’scalable reading’ (Weitin,
2017) – or, in this case, more accurately ’scalable
viewing’ – studies in which automated analysis on
large data sets is combined with a focused man-
ual analysis on smaller samples and which have
become widely used in other areas of Digital Hu-
manities, notably literary studies (de Sá Pereira,
2019). This approach would be particularly attrac-
tive for research questions that inherently involve
large number of images, such as: Which elements
in images have constant significance for emotional
expression, and which exhibit variance? How have
such elements changed historically? What cultural
differences are there in emotional expression?

In the textual modality – also prominent in cul-
tural heritage – the analysis of emotions has taken
major steps in the last ten years. Neural approaches
can detect emotions significantly more accurately
than previous approaches (Nandwani and Verma,
2021). They no longer rely on dictionaries of key-
words but can recognize emotional contexts, includ-
ing stylistic devices such as irony, while also taking
global document meaning into account. Such mod-
els have also been used successfully for the analy-
sis of emotional content in literary texts (Kim and
Klinger, 2019). Recently, vision language models
(VLMs) generalize the success of text-based meth-
ods by tightly integrating language and image infor-
mation, enabling cross-modal information transfer:
They enable the generation of images from textual
descriptions, conversely the generation of textual
descriptions for images, and the answering of tex-
tual questions on images (Antol et al., 2015).

This development has the potential to carry out
emotion analysis on artwork with VLMs. However,
the success of this approach is all but guaranteed.
Due to their abstract nature, emotions are realized
visually in a wide variety of ways. Artists can
draw on the study of natural emotional expression,
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on facial expressions and gestures. Alternatively,
an emotional expressions can result from various
abstract elements, such as colors, shapes, composi-
tional schemes, or symbols: signs with a secondary
conventionalized level of meaning (Cassirer, 1923).
Since their meaning can only be analyzed in con-
text and is subject to historical change, the analysis
of emotional content of artworks is generally as-
sumed to require art historical expertise. Addition-
ally, on the technical level, it is well known that
VLMs, despite a surprisingly good understanding
of individual aspects, struggle to develop a glob-
ally coherent understanding and can suffer from
hallucinations (Huang et al., 2025). Substantive
studies on (properties of) artworks however have to
assume that the automatic analysis is largely accu-
rate, or that remaining errors are at least distributed
as randomly as possible.

To our knowledge, there are no studies that
gauge the concrete quality of emotion-related anal-
yses that fall out of current VLMs. Our study aims
to fill this gap. We select 38 images of artworks
(mostly of paintings, but also including sculptures
and photographs), present these images to three
current vision-language models and ask them a
catalog of eight questions, ranging from a pure de-
scription of the content to the interpretation of the
emotions and any symbols used. We qualitatively
evaluate the models’ outputs by hand to understand
how differentiated the models generally perceive
the different aspects of our images.

We obtain mixed results: VLMs are capable of
correctly recognizing image content, often includ-
ing emotions and the artistic means used to express
them. However, recognition generally seems to be
based on conventionalized patterns and fails with
novel combinations. Complex and symbolic im-
ages also pose difficulties. Our conclusion is that
current VLMs are already sufficiently accurate for
some scalable reading research questions and for
some types of images, but not yet for others.

2 Background and Related Work

2.1 Emotions in Art History

From an art historical perspective, emotions are
central to the artistic impact. A work of art is
meant to persuade, move, and stimulate thought.
However, how works of art achieve this effect is
often far from obvious.

One possibility is for them to use means of ex-
pression from natural life that are based on an-

thropological patterns: an open mouth with raised
corners indicates laughter, while narrowed eyes
and drooping corners indicate sadness. The same
applies to physical means of expression such as
posture and gestures. The expressive values are
modular: one expressive value is reinforced by an-
other. They are also quite constant over time within
a cultural area. For this reason, they are referred to
in psychology as ’basic emotions’ (Ekman, 1999).

As an alternative to means of expression based
on gestures and facial expressions, artists employ
less clearly legible means of expression in their
works, such as certain colors, shapes, composi-
tional devices, or symbols – e.g., heart for love.
These act alongside the anthropological means
(such as smiles), reinforcing them and leading to
specific emotional expressions. The knowledge
needed to understand these means is culturally and
historically specific, and reading them correctly re-
quires a historical understanding. For this reason,
many researchers call for a model of ’historical
emotion research’ in addition to the more univer-
sal model of basic emotions (Stearns and Stearns,
1985; Rosenwein, 2010; Frevert et al., 2011; Matt,
2011; Plamper, 2012).

Art historical research rarely distinguishes these
two scenarios. Instead, emotions in works of art are
attributed predominantly on the basis of concrete,
codified expression schemes and symbols. The
more abstract means of conveying emotions are
rarely analyzed in detail, but rather take a back seat
in the shape of general and diffuse descriptions of
impressions. Our study takes steps towards remedy-
ing this situation, using VLMs as a pre-theoretical
device that gives – at least in theory – equal im-
portance to the different elements in the image. In
practice, of course, this depends on the materials
on which the models we use were pretrained.

2.2 Language and Vision-Language Models
Attempts to support the analysis of artworks with
automatic methods can at this point build on the
technological progress in AI/NLP of the last ten
year, notably Language Models (LM) based on
transformers (Vaswani et al., 2017). In contrast
to earlier approaches, transformer-based LMs can
consider an extensive linguistic context and can
be (pre-)trained on large datasets since their train-
ing parallelizes well. From a user perspective, an
important development in recent years is the emer-
gence of instruction-tuned models (Brown et al.,
2020) that are able to answer textual questions with-
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out task-specific training, which makes them di-
rectly applicable for interactive text-based querying
by domain experts.

Vision-Language Models (VLMs) go beyond
language and strive to develop a shared understand-
ing of information from multiple modalities – typ-
ically text and visual data. Conceptually, this is
achieved by bringing together embeddings from
both modalities. Most VLMs consist of an encoder
for the image, whose output is projected onto the
embedding space of a language model that repre-
sents text meaning. Early models such as VilBERT
(Lu et al., 2019) still use conventional neural net-
works such as CNNs for the visual encoders. Cur-
rent models achieve a new level of quality by us-
ing contrastively trained image encoders such as
CLIP (Radford et al., 2021), trained to match very
large sets of image-description pairs. The resulting
models capture semantic concepts across domains.
VLMs inherit the ability to accept textual instruc-
tions and questions and generate verbal output from
their component LMs, enabling them to perform
’visual question answering’ (Antol et al., 2015).

However, current models are clearly not perfect.
Like LMs, VLMs exhibit a tendency toward hallu-
cinations (Liu et al., 2024), which can be described
as a cross-modal inconsistency between image and
description. Judging from experience with LMs,
we might expect that VLMs will have more diffi-
culty the less experience they have with a type of
image, a type of question, or both.

2.3 Artwork Analysis with Language-Vision
Models

To our knowledge, there are only two previous
studies in NLP that study the outputs of VLMs for
artworks. Hayashi et al. (2024) create a corpus pair-
ing artworks with their corresponding Wikipedia
articles. They ask VLMs to generate texts cor-
responding to article parts (sections, subsections,
etc.) and evaluate the output against the actual
article parts with natural language generation met-
rics, both in terms of textual overlap (e.g., BLUE
and ROUGE) and in terms of entity match metrics.
Ozaki et al. (2025) extend this paradigm to multi-
ple languages and in addition assess the capability
of tuning to improve the models’ outputs. These
studies found somewhat mixed results: The VLMs
generally used a certain amount of ground-truth
entities, and LoRA tuning improved results, but
this was only true for English, and performance for
other languages was lower throughout.

3 Experimental Setup

3.1 Motivation

In our study, we use the same fundamental genera-
tion paradigm as Ozaki et al. (2025) – prompting
VLMs with a pair of picture and question – but
combine it with a different evaluation paradigm.
We do not evaluate the generated texts against a
ground truth, for two reasons: (a) NLG metrics,
such as entity coverage, are difficult to translate
into insights, and it is hard to understand from the
previous studies how well the VLMs really under-
stand the images; (b) the questions are determined
by the Wikipedia article structures and thus include
questions that are not visual in nature (’What is
the history of the Mona Lisa?’) while they do not
include topic-specific questions – such as those
concerning our topic of interest, emotions.

To address concern (a), to carry out a qualitative
analysis, presenting the VLM outputs to two ex-
perts (the authors) to annotate for reasonableness.1

We thus trade a fully evaluation procedure against
a (hopefully) more detailed understanding of the
capabilities and limits of the VLMs.

To realize this potential, we address concern (b)
by defining a set of eight questions that we ask the
VLMs for each image, listed in Table 1. We formu-
late the questions in English, since current LLMs
and VLMs are trained predominantly with English
data (Zhang et al., 2024). Therefore, model errors
observed for English prompts can be more reliably
interpreted as deficits in conceptual understanding
than linguistic shortcomings (Ozaki et al., 2025;
Qin et al., 2025).

The questions progress from basic descriptions
of form and content (Q 1 and 2) to the interpretation
of the displayed emotions (Q 3 to 5) and more
nuanced characteristics of these emotions, such
as the means used for representation (Q 6), the
use of symbols (Q 7), and their intensity (Q 8).
The recurring request for brevity was necessary
to neutralize the models’ well-known tendency to
give lengthy answers (Wang and Zhou, 2024).

We also note that our case study is focused on un-
derstanding the visual understanding of the models
in their default as-published state. For this reason,
we do not provide the images’ titles to the VLMs
(Hayashi et al., 2024) – so that all information has
to be inferred from visual information – and we do

1The quality assessments largely correspond, so the results
we report below represent a consensus between the authors.
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Q 1 Is this a painting, a drawing, a sculpture,
or something else? Be brief.

Q 2 What does this artwork show? Be brief.

Q 3 Does this artwork involve an emotion?
Give a yes/no answer and a brief justifi-
cation.

Q 4 Is the emotion shown by this artwork a
positive or a negative one? Give a one-
word answer (positive/negative) and a
brief justification.

Q 5 What emotion is shown by this artwork?
Be brief.

Q 6 How is the emotion shown by this art-
work expressed artistically? Do not write
more than a short paragraph.

Q 7 Does this artwork use a symbol to visual-
ize emotion, and if it does, how? Do not
write more than a short paragraph.

Q 8 How intense is the emotion depicted? Be
brief.

Table 1: Questions posed to VLMS for image interpre-
tation: Basic description (Q 1–2), Emotion recognition
(Q 3–5), Emotion expression (Q 6–8)

not experiment with fine-tuning the VLMs (Ozaki
et al., 2025).

3.2 Selection of VLMs

The largest and best-performing LLMs and VLMs
are all proprietary and can only be used via
company-controlled APIs, which is problematic
from the perspective of transparency and repro-
ducibility (Liesenfeld et al., 2023). We therefore
limit our study to three comparatively small VLMs
that have open weights, i.e., can be downloaded in
their entirety, and are small enough to be executed
locally on a single 48GB GPU core.

Our first model is LLAVA-LLAMA-8B. It is a
member of the Llava ’Large Language and Vision
Assistant’ (Liu et al., 2023) model family. It com-
bines CLIP as an image encoder with Meta AI’s
large multilingual Llama 8B LM. The two other
models are variants of the Alibaba Qwen-VL archi-
tecture (Bai et al., 2025) which combines a CLIP
image encoder with the Qwen 2.5 multilingual
LMs. We use a version with 7B parameters (QWEN-
7B) and one with 32B parameters quantized with
AWQ (QWEN-32B-AWQ, Lin et al. (2024)).

The three models are broadly similar in that they

use similarly structured image encoders as well
as similar transformer-based LMs. However, they
behave significantly differently in practice, which
is due to the fact that they were trained by different
developers on different data. Unfortunately, we do
not have sufficiently detailed information about the
training process of any of the models to predict
specific behavioral patterns.

3.3 Selection of Images

We compile a set of 38 images of artworks from the
Prometheus image archive (Dieckmann, 2010), a
huge data base of (among other domains) artworks
from over 100 different organizations. We select
artworks from a wide range of periods (including
the Middle Ages, Renaissance, Baroque, and the
18th to 20th centuries) that have relatively clear
emotional content. Our sample comprises mostly
paintings, supplemented by some drawings, pho-
tographs, and images of sculptures. We always
select artworks in minimal pairs of two similar im-
ages to gauge the robustness of interpretation. The
complete image list can be found in Appendix A.

We present most image files directly as down-
loaded from Prometheus. For two paintings by
Arnold Böcklin, irrelevant parts of the two images
are masked out. In two other cases, recognizable
writing on the images is masked to focus the model
on visual information (see Appendix A for details).

The images are presented to the VLMs individu-
ally with each question. We set maximum answer
length to 150 tokens and otherwise use the models’
default parameters. This results in a total of 20
image pairs x 2 images x 8 questions x 3 models =
960 answers.2

4 Findings

We discuss our findings structured by observation.
Figure 1 shows three artworks to illustrate the diffi-
culties of the task3 and Table 2 the corresponding
VLM answers for the five most instructive ques-
tions. We color-code relevant passages in the VLM
output as correct (green), incorrect (red), and ques-
tionable (purple).

A Hierarchy of Skills in Image Analysis. All
three models demonstrate a good, sometimes even

2The metadata of the image files, the responses of the
models, and the scripts used for the evaluation are publicly
available at https://doi.org/10.5281/zenodo.17668625

3See Appendix for image source and licensing information.
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Figure 1: Examples of three difficult artworks. Left: The blast (Corot, Picture 15 in Appendix A). Center: Medea
furious (Delacroix, Picture 21). Melancholia I (Dürer, Picture 27).

Prompt Corot (QWEN-7B) Delacroix (QWEN-32B-AWQ) Dürer (QWEN-7B) Dürer (LLAVA-LLAMA-8B)

2. What does this
artwork show?

This artwork depicts a landscape scene
with a strong wind bending the trees,
creating a dynamic and dramatic ef-
fect. A solitary figure is seen walking
along a path in the foreground, adding
a sense of scale and human presence
to the vast, open environment. The
sky is filled with clouds, suggesting
an overcast or stormy day. The paint-
ing captures the raw power of nature
and the resilience of the human figure
within it.

This artwork depicts a classical scene
featuring a nude woman seated on a
rocky surface, holding a child in her
arms. Another child is playfully inter-
acting with her, and the background
includes lush foliage and a dark, shad-
owy setting, suggesting a mythological
or allegorical theme. The composition
and style are reminiscent of neoclassi-
cal or romantic art.

This artwork is a detailed engraving that
appears to depict a scene with symbolic
elements. It includes a figure in a state
of repose, possibly a reclining person or
a figure of death, surrounded by various
objects such as a globe, a saw, and other
tools. There are also two figures, one hold-
ing a baby, which could symbolize life or
innocence, and another figure with wings,
possibly an angel or a representation of
time or fate. The presence of the clock and
the hourglass suggests themes of time and
mortality. [. . . ]

The artwork depicts a scene with a
woman sitting on the ground, sur-
rounded by various objects and fig-
ures that appear to be in a state of dis-
array or chaos. There is a ladder, a
bell, a clock, and other items scattered
around, and the woman seems to be
in a contemplative or distressed state.
The style is reminiscent of the Baroque
period, known for its dramatic and in-
tense compositions.

3. Does this art-
work involve an
emotion?

Yes. The artwork evokes a sense
of tranquility and introspection. The
solitary figure walking through the
landscape, combined with the gentle
breeze and the expansive sky, suggests
a peaceful moment of reflection. The
muted colors and the soft brushstrokes
contribute to a calm and contempla-
tive atmosphere, which can be inter-
preted as an emotional response from
the viewer.

Yes. This artwork involves emotion,
as it depicts a tender and intimate mo-
ment between a woman and a child.
The woman’s posture and the way she
holds the child suggest a sense of care,
love, and protection. The overall com-
position, with its soft lighting and the
natural setting, enhances the emotional
depth of the scene, evoking feelings of
maternal love and serenity.

Yes. The artwork depicts a scene with sym-
bolic elements that can evoke emotions.
The presence of the angel holding a baby,
the reclining figure, and the various objects
around them suggest themes of mortality,
divinity, and perhaps a sense of loss or con-
templation. The overall composition and
the use of light and shadow can also con-
tribute to an emotional atmosphere, invit-
ing viewers to reflect on the deeper mean-
ings behind the imagery.

Yes, the artwork appears to involve an
emotion. The central figure, which
seems to be a woman, is depicted with
a contemplative or possibly sorrow-
ful expression. Her posture and the
way she holds her head suggests a mo-
ment of introspection or sadness. The
overall atmosphere of the scene, with
the cluttered and somewhat chaotic en-
vironment, may also contribute to a
sense of emotional distress or unease.

4. Is the emotion
shown by this
artwork a posi-
tive or a negative
one?

Negative The painting depicts a stormy
landscape with bent trees, suggesting
strong winds and possibly rain, which
can evoke feelings of unease, fear, or
sadness in viewers. The solitary figure
in the distance might also contribute
to a sense of isolation or vulnerability
[. . . ]

**Positive** The artwork depicts a
serene and tender moment between a
woman and a child, with the woman
holding the child close and the child ap-
pearing content and secure. The over-
all mood is one of love, care, and tran-
quility, which are positive emotions.
[. . . ]

Negative The artwork depicts a scene of
death, with a figure lying on the ground,
possibly deceased, and a dog lying beside
them. The presence of an angel holding a
baby suggests a theme of loss or mourning,
which typically conveys a negative emo-
tional tone.

Negative

6. How is the
emotion shown
by this artwork
expressed artisti-
cally?

The emotion in this artwork is ex-
pressed through the dynamic and dra-
matic posture of the trees, which ap-
pear to be bent and twisted by the wind,
suggesting a sense of struggle and re-
silience. The muted color palette and
the overcast sky contribute to a somber
and contemplative mood, evoking feel-
ings of solitude and introspection. The
lone figure in the distance adds to the
overall feeling of isolation and perhaps
a yearning for connection or escape
from the harshness of nature. The
artist’s use of light and shadow further
enhances the emotional depth [. . . ]

The artwork expresses emotion
through a combination of compo-
sitional elements, color, and body
language. The central figure, a woman,
is depicted with a serene and contem-
plative expression, her gaze directed
outward, suggesting introspection or a
sense of calm. The use of soft, warm
lighting highlights her form and the
delicate features of the child she holds,
emphasizing tenderness and maternal
love. The dark, shadowy background
contrasts with the illuminated figures,
drawing attention to their interaction
and creating a sense of intimacy. [. . . ]

The emotion in this artwork is expressed
through intricate details and symbolic el-
ements. The angelic figures, one holding
a baby, convey a sense of tenderness and
protection. The reclining figure draped
in a cloak suggests a state of rest or per-
haps contemplation, while the presence
of tools and a globe hints at themes of
craftsmanship and exploration. The over-
all composition, with its detailed textures
and symbolic objects like the hourglass
and bell, evokes a contemplative and some-
what somber mood, reflecting on themes
of time, mortality, and the passage of life.

The emotion in this artwork is ex-
pressed through the use of a somber
color palette, the detailed rendering of
the figures, and the overall composi-
tion. The woman, dressed in a flowing
gown, sits with her head in her hands,
suggesting a state of sorrow or contem-
plation. The surrounding environment,
with its cluttered and chaotic elements,
adds to the sense of distress. The use
of light and shadow, as well as the posi-
tioning of the figures, contributes to the
overall mood of the piece. The artist
has skillfully used these elements to
convey a deep emotional impact.

7. Does this art-
work use a sym-
bol to visualize
emotion, and if it
does, how?

Yes, the artwork uses the symbol of
bent trees to visualize emotion. The
trees, leaning dramatically towards the
left side of the canvas, suggest a strong
wind or storm, evoking a sense of strug-
gle and resilience. The figure in the
foreground, seemingly small and dis-
tant, adds to the feeling of isolation and
perhaps a contemplative mood amidst
the powerful natural forces depicted.

Yes, this artwork uses symbols to vi-
sualize emotion. The central figure, a
woman, is depicted in a contemplative
or melancholic pose, holding a child
who appears to be in distress or fear.
The child’s expression and body lan-
guage, such as clutching the woman’s
arm, symbolize vulnerability and de-
pendence. The dark, shadowy back-
ground and the woman’s somber ex-
pression further enhance the emotional
tone, suggesting themes of sorrow, pro-
tection, or maternal concern. [. . . ]

Yes, the artwork uses symbols to visual-
ize emotion. The angel holding the baby
conveys a sense of innocence and purity,
while the angel with the laurel wreath and
sword suggests a theme of victory or tri-
umph over adversity, possibly symboliz-
ing the triumph of good over evil. The
presence of the dog lying down might rep-
resent loyalty or rest, adding another layer
of emotional depth to the scene. The over-
all composition, with its detailed elements
and symbolic figures, evokes a narrative
that is rich in emotional and philosophical
undertones.

Yes, the artwork uses a symbol to vi-
sualize emotion. The woman in the
image is depicted with a halo, which is
a common symbol in art to represent
holiness, purity, or sainthood. This
suggests that the woman is being por-
trayed as a virtuous or sacred figure,
which can evoke feelings of reverence
or admiration in the viewer. The halo’s
presence in the artwork serves to con-
vey a sense of spiritual significance or
moral excellence associated with the
character.

Table 2: VLM generated descriptions for the difficult artworks. Green: correct, red: incorrect, purple: questionable.
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very good, ability to understand the images. How-
ever, there are significant differences in answer
quality among the different question types, which
roughly correlate with the order of our questions:
The initial questions are answered better than those
at the end. Q 1 (type of artwork) is almost al-
ways answered correctly (LLAVA-LLAMA-8B cat-
egorizes Hoepffner’s black-and-white photograph
as a drawing). The content descriptions (Q 2) are
also mostly accurate: For Corot’s ’Blast’ (Fig. 1
left and Tab. 2), the model correctly identifies the
motifs of the force of nature and the solitary person
as well as the effects they create.

Q 3 to 5, which concern the emotional content,
are still mostly answered correctly, but show a
greater tendency toward evasive or inconsistent an-
swers. As an example, consider the Corot painting,
where Qwen initially speaks of a ’calm, contem-
plative atmosphere’ and a ’peaceful moment of
reflection’, but answers ’negative’ to the specific
question about the polarity of the emotion and, with
reference to the forces of nature, also brings unease,
fear and vulnerability into play.

Q 6 concerning the artistic expression of emo-
tions is answered largely well. The models identify,
mostly reliably, various levels of expression of emo-
tions, both in terms of content (composition, depic-
tion of specific objects, facial expressions and pos-
tures of figures) and stylistic devices (color palette,
brushwork). Overall, facial expressions and pos-
tures are more precisely identified than abstract
forms which become the more accurate the more el-
ements point in the same direction. For example, in
Camille Corot’s ’Blast’ (Figure 1 left), QWEN-7B

mentions the wind-blown trees and the threatening
sky against which the small human figure is seen,
in combination with the gloomy colors and the play
of light and shadow. Dynamic compositions tend
to be recognized better than static ones.

The answers to Q 7 concerning symbols are the
least convincing. Here, all models frequently men-
tion aspects of the image that do not represent sym-
bols. Answers to questions 6 and 7 are often identi-
cal, as in the landscape paintings by Caspar David
Friedrich (Pictures 9/10, cf. Appendix A), where,
when asked about means of expression and sym-
bols, QWEN-7B mentions soft and nuanced colors
that evoke calm, peace, and a contemplative mood.
In some cases, symbolic objects that do not appear
in the paintings are also hallucinated. For exam-
ple, LLAVA-LLAMA-8B calls the personification
of Melancholy in Albrecht Dürer’s engraving an

’angel’ (Figure 1 right) because of her wings and
hallucinates a halo that she does not possess. This
might be due to the stylistic proximity to religious
images, which often feature halos.

Comparing the answers within the minimal pairs
of similar artworks, we also see a reasonable pat-
tern: The answers are similar, making it clear that
the pictures are closely related, but sufficiently dis-
similar to pick out each picture’s individuality.

In sum, we observe a continuum: Properties of
images that can characterized concretely at the vi-
sual level are captured more reliably by the VLMs
than properties requiring more interpretation. How-
ever, even these are often inferred correctly at a
basic level. In our view, this ability indicates that
the models were exposed to (at least some) inter-
pretive texts on art or art history during training.

Overextension of the concepts emotion and sym-
bol. Like LLMs, the VLMs consistently exhibit
confirmation (or position) bias, i.e., the tendency to
answer ’yes’ to yes/no questions (Echterhoff et al.,
2024). This applies in particular to Qs 3 and 7
(presence of emotions and emotion symbols): The
models answer almost always affirmatively, even
if this is wrong. Indeed, LLAVA-LLAMA-8B tends
to avoid, in cases of doubt, a yes/no answer and
simply lists potential symbols. The only model
that gives explicit negative answers is QWEN-32B-
AWQ (’This artwork does not use a symbol to visu-
alize emotion’).

As the models continue such wrongly affirma-
tive answers, they are forced to interpret the terms
’emotion’ and ’symbol’ very broadly. Regarding
emotions, the models refer to a small portion of the
artworks in terms of emotions in the narrower sense
of basic emotions (Ekman, 1999) such as grief, fear,
or joy. Many others are described by general affec-
tive states – or maybe aesthetic emotions (Israeli,
1928) – such as melancholy, loneliness, or awe.
For others, the models describe the emotional con-
tent with very abstract terms such as contemplation,
tranquility and introspection, with only a tenuous
connection to concrete visual properties. Contem-
plation in particular is used so frequently – by all
models for more than half of all images – that an
interpretation by reference to a (e.g., monastic) vita
contemplativa (a philosophical life style) is uncon-
vincing. Given that VLMs are presumably trained
mostly on photographs, it appears plausible that
contemplation characterizes the specific aesthetic
quality of the works of art, in contrast to the pic-

6



tures of contemporary reality that the models are
more familiar with.

We see a similar situation with symbols: when
clear symbols are present in the images, they are of-
ten recognized, for example, the book as a symbol
of wisdom, the threatening sky and the thunder-
storm as symbols of conflict and threat, or the skull
as a symbol of mortality. LLAVA-LLAMA-8B does
a better job in this regard; see the discussion below.

Particularly in less symbolic images, the models
also tend to describe any emotion-relevant prop-
erties of the images as symbols, such as certain
facial expressions or postures, the color palette, or
the contrast of light and shadow. In our opinion,
these are not genuine (emotion) symbols, since
the emotional content here is part of the primary
meaning and not added through a secondary con-
ventionalized relationship. The models use the verb
’symbolize’ very loosely to simply mean ’express’.
In other places, the models identify symbols that
are not conventionalized and therefore somewhat
dubious. These include the interpretation of a fig-
ure standing in water as a symbol of loneliness
(Whistler, Picture 33/34), or the interpretation of
a cypress tree as a symbol of timelessness (Böck-
lin, Picture 25/26). Finally, some clear symbols,
such as the dagger in Medea’s hand (Figure 1 cen-
ter), are overlooked when they do not fit a simple
interpretation (see below).

Lack of Consistency. The VLMs we consider
here do not possess a thought process independent
of output generation. In consequence, they are un-
able to reflect on the consistency of their output
(Marjanović et al., 2025). We observe inconsis-
tency both within answers and across answers. For
example, in justifying their answer to Q 3 (Is the art-
work emotional?), the models often already identify
an emotion and the form of its expression, which
overlaps in content with Q 5 (specific emotion) and
Q 6 (emotion expression). In addition, there are
semantic relations between questions: In an ideal
model, the answers to Q 4 (emotion polarity) and
Q 5 (specific emotion) would always match.

We observe a correlation between consistency
and the emotion’s intensity (Q 8): the clearer and
more intense the emotion depicted, the more con-
sistently the models answer, similar to human be-
havior (Troiano et al., 2021). For images with sub-
jective, weak, or ambivalent emotions, we often
see contradictory answers to the various questions.
Camille Corot’s ’Blast’ (Figure 1, left) falls into

this category, as mentioned above. The models
also frequently use hedging language (’or’, ’per-
haps even’). In principle, this might be an infor-
mative strategy, if it allowed the user to recognize
model uncertainty. Currently, however, such hedge
expressions are not used with sufficient reliability
by the models: not all uncertain statements are
marked as such, and even attributions that we con-
sider unambiguous are repeatedly weakened. Thus,
inconsistency is evident at this level as well.

Easier and Harder Artwork Categories. When
comparing artworks from different periods, it is
striking that the models produce the best results for
representational artworks (showing recognizable
objects), independently of the artistic technique.
Examples include the pietà sculptures as well as
paintings by Corot, Seurat, and Van Gogh. In com-
parison, the models struggle with three other cate-
gories of artworks: abstract images, allegories, and
highly contextualized artworks.

There are three highly abstract images in our
sample: two Deluge paintings by William Turner,
two water paintings by James McNeill Whistler
(Pictures 33/34), and two sections of a Mark
Rothko mural (Pictures 35/36). These paintings
primarily convey moods through colors and shapes,
containing few concrete object. The models do
recognize these moods, but due to semantic under-
determination, they tend to detect both positive and
negative emotions, thus, as discussed above, offer-
ing an inconsistent interpretation. Formulations
such as ’depending on the context’ or ’depending
on the viewer’ are also offered.

The category of allegories is exemplified in
our sample by the two allegories on melancholy
by Albrecht Dürer (Figure 1 right) and Giovanni
Benedetto Castiglione (Pictures 27/28). The mod-
els are clearly unfamiliar with the genre and cannot
cope with the fact that (almost) all of the objects
in the painting are to be understood symbolically.
As shown in Table 2 (right), the models mention
’chaos’ or describe the painting as ’overloaded’.
Indeed, recognizing the image content also seems
more difficult than in other categories, and QWEN-
7B, in particular, hallucinates several related ob-
jects (including an angel holding a baby and a
clock). As a result, the models’ explanations of
the emotions remain vague and contradictory, even
though the general negative polarity is correctly
recognized.

The third difficult category consists of artworks
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that require background knowledge for interpreta-
tion, such as Eugène Delacroix’s painting of Medea
(Figure 1 center) from Greek mythology who mur-
ders her children out of spite. QWEN-7B recog-
nizes the relevant content (mother, children, sword,
cave), the stylistic devices (contrasting colors), and
also the tension depicted. In the overall interpreta-
tion, however, the model focuses on the main ob-
jects of mother and children and concludes that the
image symbolizes ’balance and tenderness. . . the
emotional depth of motherly love’. This may also
be related to the fact that the model was (presum-
ably) forbidden from verbalizing violent content
due to its safety alignment; however, the problem
also arises in other cases.

The difficult cases have in common that the emo-
tional interpretation cannot be derived from the
co-occurrence of a few objects associated with a
conventionalized meaning: Either because there
are no objects (abstract images), because there are
too many (symbolic images), or because the con-
ventional interpretation is overridden by a specific
context (mythological images). This observation
suggests that good recognition of objects and their
configurations is still important for sound image
interpretation. This seems plausible: the images
the VLMs saw during training are likely only a
fraction of works of art, and a much larger propor-
tion are photographs, often of a journalistic nature.
In these photographs, the meaning is primarily de-
rived from the objects and only to a small extent
from other properties. Furthermore, such popular
or journalistic images usually operate with basic
anthropological constellations (love, grief, relation-
ships, violence) and less with complex symbols, as
they are designed for broad understanding. From
this perspective, it is even surprising that the VLMs
are relatively successful in recognizing the stylistic
and formal properties of the artworks. Again, this
indicates the presence of art (historical) materials
in the training data.

Differences among VLMs. The three models
are comparable in terms of the general quality of
their analysis, despite their differences in training
and model sizes. They have different strengths
and weaknesses, though. Table 2 (right) shows
the output of LLAVA-LLAMA-8B and QWEN-32B-
AWQ for the same picture for direct comparison.

The Qwen models appear to have seen more
texts in their training that deal with visual arts
specifically. As a consequence, their image descrip-

tions read more professionally and often convey
the content better. For example, in the landscape
paining ’Morning on the Riesengebirge’ (Caspar
David Friedrich, Picture 10), the gentle gradation
from warm yellow to cooler blue and the staggered
mountain ranges are described in terms of a feel-
ing of depth and expanse that invites the viewer to
reflect on the grandeur of nature, while the sparse
vegetation and the deserted landscape evoke feel-
ings of loneliness and introspection: there is (al-
most) nothing to add to this from an art historical
perspective. The model also recognizes other artis-
tic means that do not operate as symbols, such
as the half-open doors in Vilhelm Hammershøi’s
work (Pictures 31/32) that create tension. The
Qwen models also has significantly more extensive
factual knowledge: QWEN-7B directly recognizes
some artists (Van Gogh), styles (Pointillism), and
categories of artworks (pietà, Pictures 3–6). It de-
rives emotional values directly from precisely rec-
ognized religious iconography (pietà = grief, em-
pathy, maternal love). This knowledge also leads
to correct intercultural interpretation of expressive
values (Indian lady, 18th century, Picture 30).

The danger is that models rely too heavily on
their knowledge of specific images. In fact, the
larger QWEN-32B-AWQ model mistakes a numbers
of artworks for different but related ones, for exam-
ple claiming that George Seurat’s ’Circus sideshow’
(Picture 7) was his (better-known) ’A Sunday Af-
ternoon on the Island of La Grande Jatte’. Conse-
quently, the description of the painting is a mix-
ture of what is seen in the actual image and what
the model knows about the other one (’The fig-
ures in the painting are engaged in various activi-
ties. . . ’). In that sense, the larger model’s capacity
for better memorization is in fact a liability. On
the upside, however, the larger QWEN-32B-AWQ–
as discussed above – is also the only one to break
the confirmation bias and state correctly that some
pictures are not symbolic.

In comparison, LLAVA-LLAMA-8B has less do-
main knowledge: the model only roughly recog-
nizes styles and no artists. The model tends to have
more difficulty interpreting complex images than
the Qwen models, resorting more often to vague
or attenuated expressions. A surprising strength
of LLAVA-LLAMA-8B is its ability to recognize
symbols in images and assign emotions better than
Qwen. For example, LLAVA-LLAMA-8B recog-
nizes the veil in Marta Hoepffner’s ’Mourning’
photograph (Picture 24); the book as a symbol
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of knowledge and wisdom in several images; the
abyss as a symbol of threat; individual small fig-
ures as symbols of loneliness; and the cross and
crown of thorns as symbols of the Passion – the lat-
ter even though the model has no concept of pietà.
The model thus demonstrates a knowledge of affec-
tive symbols from different eras and cultures.

5 Discussion

Our case study investigated how well current
vision-language models (VLMs) can be used to
interpret the emotional content of artworks, present-
ing a dataset of 38 images to three current VLMs.
By using a qualitative evaluation approach based on
expert judgments, we are able to obtain a detailed
profile of the VLMs’ capabilities. Our results show
that VLMs can recognize the content of artworks
well, often also the emotions they depict and how
they are expressed – largely independent of the type
of artwork, their historical period, and their style.
This indicates that VLMs implicitly incorporate a
substantial amount of art historical knowledge on
which they can build. The Qwen models demon-
strate significantly more detailed knowledge and
a better command of the domain language than
LLAVA-LLAMA-8B.

However, VLMs continue to exhibit the typical
limitations of LMs: they base their interpretations
of deeper levels of meaning on observations of
simple surface patterns (such as the presence of
certain objects or stylistic devices) and their con-
ventionalized meaning. This explains their abil-
ity to generalize to artworks, but fails precisely
when the artist creates something novel by tran-
scending conventionalized patterns or at least using
them ambivalently. Similarly, when the patterns
become too complex, as in symbolist paintings,
the models fail, since globally coherent interpreta-
tions would require complex inferences (Shen et al.,
2024). Given these observations, it is not surprising
that the VLMs -– especially the Qwen models -–
struggle with the reliable recognition of emotion
symbols: The interpretation of such symbols typ-
ically arises from a long chain of inferences that
determine the meaning of a symbol by intersecting
the set of possible symbols, the set of interpreta-
tions of these symbols, and the set of meanings of
the entire artwork.

The strength of VLMs our study identifies in
dealing with conventionalized aspects of artwork al-
ready lends itself to possible concrete applications.

For example, VLMs could be used in extending
large catalogs of artworks with short descriptive
text for better indexing. Similarly, models also
seem to be sufficiently powerful for the large field
of audio descriptions in e-publishing, converting
images into text, for example to improve accessi-
bility. In either case, there is still a role for experts
to review and correct these results.

6 Limitations and Future Work

Our analysis is a case study and only considered a
limited number of artworks (38) and of VLMs (3).
The artworks were all drawn from the classical art
history canon, including only one non-Western art-
work (Picture 30) and only two artworks by women
(Picture 23 and 24).

Further, our analysis of the VLM outputs follows
methodological practice in art history rather than
AI. It adopts a scalable reading approach, largely
qualitative in nature, that does not scale well: it
could not be extended easily to larger samples of
artworks (to achieve a better representativeness),
additional questions (to apply our approach to art-
work properties other than emotions) or a larger
number of raters (to minimize the impact of per-
sonal bias).

For these reasons, one important avenue for fu-
ture research is the identification of evaluation ap-
proaches that combine the advantages of Ozaki et
al.’s (2024) fully automatic quantitative analysis
with our qualitative, more detailed analysis. A sec-
ond such avenue is the fine-tuning of VLMs for
the analysis of emotions in artwork. This can be
hoped to improve the general ability of VLMs to
recognize emotional content. Also, it would ideally
curb the models’ verbosity, which complicates their
use for tasks like audio description generation (as
mentioned above) and the field of cultural heritage
in general. As usual, the challenge remains to find
suitable supervision.

References
Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-

garet Mitchell, Dhruv Batra, and C. Lawrence Zit-
nick. 2015. VQA: Visual question answering. In
Proceedings of the IEEE International Conference
on Computer Vision, pages 2425–2433, Santiago,
Chile.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wen-
bin Ge, Sibo Song, Kai Dang, Peng Wang, Shi-
jie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu,

9



Mingkun Yang, Zhaohai Li, Jianqiang Wan, Pengfei
Wang, Wei Ding, Zheren Fu, Yiheng Xu, and 8 others.
2025. Qwen2.5-VL technical report. arXiv preprint
arXiv:2502.13923.

Roland Barthes. 1977. Image, Music, Text: Essays. Hill
and Wang / Fontana Press.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, and 12 others. 2020. Language
models are few-shot learners. In Advances in Neural
Information Processing Systems.

Ernst Cassirer. 1923. Philosophie der symbolischen
Formen, volume 1: Die Sprache. Kindler, Weimar.

Moacir P. de Sá Pereira. 2019. Mixed methodological
digital humanities. In Matthew K. Gold and Lauren F.
Klein, editors, Debates in the Digital Humanities
2019. University of Minnesota Press, Minneapolis.

Lisa Dieckmann. 2010. Prometheus: The distributed
digital image archive for research and education. In
Béatrice Joyeux-Prunel, editor, L’Art et la Mesure.
Éditions Rue d’Ulm.

Jessica M. Echterhoff, Yao Liu, Abeer Alessa, Julian
McAuley, and Zexue He. 2024. Cognitive bias in
decision-making with LLMs. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2024, pages 12640–12653, Miami, Florida, USA.
Association for Computational Linguistics.

Paul P. Ekman. 1999. Basic emotions. In T. Dalgleish
and T. Power, editors, The Handbook of Cognition
and Emotion, pages 45–60. John Wiley & Sons, Sus-
sex, U.K.

Ute Frevert, Monique Scheer, Anne Schmidt, Pascal
Eitler, Bettina Hitzer, Nina Verheyen, Benno Gam-
merl, Christian Bailey, and Margrit Pernau. 2011.
Gefühlswissen. Eine lexikalische Spurensuche in der
Moderne. Campus, Frankfurt am Main.

Kazuki Hayashi, Yusuke Sakai, Hidetaka Kamigaito,
Katsuhiko Hayashi, and Taro Watanabe. 2024. To-
wards artwork explanation in large-scale vision lan-
guage models. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 705–729,
Bangkok, Thailand. Association for Computational
Linguistics.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting
Liu. 2025. A survey on hallucination in large lan-
guage models: Principles, taxonomy, challenges, and
open questions. ACM Transactions on Information
Systems, 43(2):42:1–42:55.

Nathan Israeli. 1928. Affective reactions to painting
reproductions: A study in the psychology of esthetics.
Journal of Applied Psychology, 12(1):125–139.

Evgeny Kim and Roman Klinger. 2019. A survey on
sentiment and emotion analysis for computational
literary studies. Zeitschrift für digitale Geisteswis-
senschaften, 4:1–23.

Andreas Liesenfeld, Alianda Lopez, and Mark Dinge-
manse. 2023. Opening up ChatGPT: Tracking open-
ness, transparency, and accountability in instruction-
tuned text generators. In Proceedings of the 5th In-
ternational Conference on Conversational User In-
terfaces, pages Article 47, 1–6, New York, NY, USA.
Association for Computing Machinery.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-
Ming Chen, Wei-Chen Wang, Guangxuan Xiao,
Xingyu Dang, Chuang Gan, and Song Han. 2024.
AWQ: Activation-aware weight quantization for on-
device LLM compression and acceleration. In Pro-
ceedings of Machine Learning and Systems, vol-
ume 6, pages 87–100.

Hanchao Liu, Wenyuan Xue, Yifei Chen, Dapeng Chen,
Xiutian Zhao, Ke Wang, Liping Hou, Rongjun Li,
and Wei Peng. 2024. A survey on hallucination
in large vision-language models. arXiv preprint
arXiv:2402.00253.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023. Visual instruction tuning. In Advances in
Neural Information Processing Systems.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee.
2019. ViLBERT: Pretraining task-agnostic visiolin-
guistic representations for vision-and-language tasks.
In Advances in Neural Information Processing Sys-
tems.
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A Image List

The following list covers artists, image titles, pre-
processing steps (where pertinent) and licensing
information (for the images shown in Fig. 1).

No. Image

1 Charles Le Brun: Fear (D)
[Preprocessing: Writing masked]

2 Anne-Louis Girodet: Scene from a del-
uge (P) [Preprocessing: Writing masked]

3 Unknown artist: Pietà Röttgen (S)
4 Unknown artist: Pietà 1875 (S)
5 Giovanni de Fondulis: Madonna on

throne with child (S)
6 Michelangelo: Pietà (S)
7 Georges Seurat: Circus sideshow (P)
8 Georges Seurat: The circus (P)
9 Caspar David Friedrich: The Monk by

the Sea (P)
10 Caspar David Friedrich: Morning on the

Riesengebirge (P)
11 William Turner: Shade and Darkness –

the evening of the deluge (P)
12 William Turner: Light and colour

(Goethe’s theory) – the morning after the
deluge – Moses writing the book of gene-
sis (P)

13 Nicolas Poussin: Landscape during thun-
derstorm with Pyramus and Thisbe (P)

14 Nicolas Poussin: Landscape with Saint
Jerome (P)

15 Camille Corot: The blast (P)
Shown in Fig. 1 (left). License: CC BY
Source: https://musees-reims.fr

16 Camille Corot: Recollection of Morte-
fontaine (P)

17 Claude Lorrain: Harbour scene at sunset
(P)

18 Claude Lorrain: Harbour scene with ris-
ing sun (P)

19 Caspar David Friedrich: View of Arkona
with rising moon (D)

20 Caspar David Friedrich: View of Arkona
by moonlight (D)

21 Eugène Delacroix: Medea furious (P)
Shown in Fig. 1 (center). License: PDM
Source: Wikipedia Commons

22 William Wetmore Story: Medea (S)
23 Clara von Rappard: In Trauer (P)

11



24 Marta Hoepffner: Ausdrucksstudie
Trauer (F)

25 Arnold Böcklin: Villa by the sea (P)
26 Arnold Böcklin: Rest on the flight into

Egypt (P) [Preprocessing: Left part of
picture (figures) masked]

27 Albrecht Dürer: Melancholia I (D)
[Preprocessing: Writing masked]
Shown in Fig. 1 (right). License: CC0
Source: Wikipedia Commons

28 Giovanni Benedetto Castiglione: Melan-
cholia (D)

29 Henri Matisse: Odalisque (P)
30 Unknown artist: Melancholy Courtesan

(P)
31 Vilhelm Hammershøi: Interior. Study in

sunlight (P)
32 Vilhelm Hammershøi: White doors /

Open doors (P)
33 James McNeill Whistler: Nocturne: Blue

and silver – Cremone lights (P)
34 James McNeill Whistler: Nocturne: Blue

and silver – Chelsea (P)
35 Mark Rothko: Mural, Section 5 (P)
36 Mark Rothko: Untitled [Black on ma-

roon (Seagram Mural)] (P)
37 Vincent van Gogh: Van Gogh’s chair (P)
38 Vincent van Gogh: Gauguin’s chair (P)

Remarks:

• The three images from Figure 1 are numbers
15, 21, and 27. Details see there.

• Artwork types are abbreviated as follows: P =
painting, S = sculpture, F = photography, D =
drawing

• Complete information on pictures is avail-
able at https://doi.org/10.5281/zenodo.
17668625
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Abstract
Large-scale Vision Language Models (LVLMs)
exhibit advanced capabilities in tasks that re-
quire visual information, including object de-
tection. These capabilities have promising ap-
plications in various industrial domains, such as
autonomous driving. For example, LVLMs can
generate safety-oriented descriptions of videos
captured by road-facing cameras. However, en-
suring comprehensive safety requires additional
monitoring driver-facing views to detect risky
events, such as the use of mobiles while driv-
ing. Thus, the ability to process synchronized
inputs is necessary from both driver-facing and
road-facing cameras. In this study, we develop
a model integrating two video inputs and in-
vestigate the capabilities of LVLMs by con-
structing a dataset and evaluating their perfor-
mance on this dataset. Our experimental re-
sults demonstrate that while pre-trained LVLMs
have limited effectiveness, fine-tuned LVLMs
can generate accurate and safety-aware driving
instructions. Nonetheless, several challenges
remain, particularly in detecting subtle or com-
plex events in the video. Our findings and er-
ror analysis provide valuable insights that can
contribute to the improvement of LVLM-based
systems in this domain.

1 Introduction
The promising capabilities of Large Language Mod-
els (LLMs) are changing this society by assisting
various tasks, e.g., coding (Rozière et al., 2024)
and education (Liu et al., 2024). Large-scale Vi-
sion Language Models (LVLMs) possess high ca-
pabilities in the intersection of vision and language
tasks, leveraging the capabilities of LLMs, such
as inference and instruction following, by integrat-
ing a vision encoder. Therefore, LVLMs have been
adopted across domains that require both visual
and textual information, including the medical ap-
plication (Li et al., 2023a; Yan et al., 2024; Pal and
Sankarasubbu, 2024) and driving assistance (Arai
et al., 2025; Duan et al., 2024; Xuan et al., 2024).

It's important to...

The environment is 
snowy and...

w

Figure 1: Illustration of an application of this study. A
Model provides driving instructions for the given video.

In a driving domain, LVLMs are used to detect
objects on the road, generate actions, and provide
safe driving instructions (Zhou et al., 2024; Lu et al.,
2025; Duan et al., 2024; Xuan et al., 2024). With the
rapid growth of the dashcam industry, LVLMs are
increasingly exploited to interpret driving scenes
captured by the dashcam. Previous studies investi-
gated the capabilities of LVLMs to interpret vehicle
behavior and suggest actions for safe driving (Duan
et al., 2024; Xuan et al., 2024). However, while a
single dashcam for the road-facing view is enough
to detect risky actions of vehicles (e.g., harsh turns),
a driver-facing view using an additional dashcam
is needed, for example, when detecting the driver’s
use of mobiles while driving.

In this study, we develop LVLM-based models
that generate instructions for safe driving based on
two video streams that synchronize driver-facing
and road-facing views. We collect such videos and
annotate each clip in two stages: first, by detect-
ing events that happened in them, and second, by
generating safe driving instructions. We create a
conversation-style dataset, where a user asks what
is happening in the video, followed by a request to
generate safe driving instructions. Our experiments
demonstrate that fine-tuned LVLMs on our dataset
can generate safe driving instructions that are well-
aligned with the visual context, whereas pre-trained
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Road-Facing View

Driver-Facing View
Synchronized View

What is recommended actions 
for the ego-car?

It's important to...

What is happening in the video?

The environment is snowy and...

Our Dataset

Event Detection

Safe Driving Instruction

Annotator

Primary Event
      Crash
      Forward Collision Warning
 ✅  Tailgating
      ...
Sub Event
  Weather Condition: Snowy
  ...

Figure 2: Overview of our dataset construction approach. The dataset contains videos with synchronized driver-
facing and road-facing views. GPT-4o generates the gold answers to event detection and safe driving instruction
questions based on annotated labels for each video.

Human What is happening in the video?
Assistant The environment is icy with clear weather as you approach an intersection. A rolling stop occurs as you navigate

the intersection at 8 mph while properly using your turn signal.

Human What is recommended actions for the ego-car?
Assistant \ud83d\udca1Paying extra attention to road conditions due to ice is important. Make sure to bring your vehicle to

a complete stop at intersections to ensure safety, especially in icy conditions where stopping distances are longer.

Table 1: An example of the question and its answer. The top is the event detection, and the bottom is the safe driving
instruction.

models generate generic guidance. Nonetheless,
even the fine-tuned models occasionally fail to de-
tect risky events (e.g., harsh turns). Our findings
and analysis provide valuable insights that help im-
prove LVLM-based driving instruction systems, as
illustrated in Figure 1.

2 Background and Related Work

2.1 Large-scale Vision Language Models

Large-scale Vision Language Models (LVLMs),
such as Flamingo (Alayrac et al., 2022), BLIP-2 (Li
et al., 2023b), and LLaVA (Liu et al., 2023), in-
tegrate a vision encoder with a Large Language
Model (LLM), enabling them to process visual
inputs (e.g., images) and achieving advanced per-
formance on Visual Question–Answering (VQA)
tasks (Liu et al., 2023; Bai et al., 2025). Visual
instruction tuning is also effective for further per-
formance improvement (Liu et al., 2023). The en-
hanced capabilities of LVLMs are helpful across
various domains, including disease detection from
clinical images (Yan et al., 2024; Pal and Sankara-
subbu, 2024), artwork explanation (Hayashi et al.,
2024; Ozaki et al., 2025), and vowel prediction from
MRI-based articulatory images and videos (Sakajo
et al., 2025).

2.2 Language Models in Driving Scenario

LLMs and LVLMs are also helpful in driving
domains, and several studies have demonstrated
their capabilities (Zhou et al., 2024). For exam-
ple, LVLMs visually understand traffic signs (Lu
et al., 2025), and LLMs can be utilized to de-
velop models for processing LiDAR data (Yang
et al., 2023) and autonomous driving (Xu et al.,
2024). LVLMs are also leveraged for construct-
ing a driving dataset (Arai et al., 2025). In the
AI City Challenge (Wang et al., 2024), LVLM-
based approaches (Duan et al., 2024; Xuan et al.,
2024) achieved advanced performance for the traffic
safety description and analysis task, suggesting that
LVLMs have the capabilities to learn and provide
descriptions regarding safe driving. However, the
capabilities of LLMs to instruct safe driving with
synchronized driver-facing and road-facing RGB
cameras are unexplored.

3 Dataset Construction

We constructed a dataset to evaluate LVLMs in the
context of safe driving instructions, as illustrated in
Figure 2. The dataset comprises videos and ques-
tions, along with expert-annotated answers.
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Primary Event Description
Crash Any visible crash involving ego-vehicle or other vehicles.
Forward Collision Warning An event where the ego-vehicle is at risk of imminent front-end collision.
Tailgating (Following Distance) Following another vehicle at a dangerously short distance.
Harsh Brake A sudden, strong deceleration by the ego-vehicle.
Harsh Turn A sharp, abrupt turn indicating potential loss of control or evasive maneuver.
Rolling Stop Failure to come to a complete stop at stop signs or similar control points.
Mobile Usage The driver is observed using a mobile phone (hands-on or hands-free).
Inattentive Driving Observable distraction or loss of attention by the driver.
Lane Departure Vehicle crosses out of its lane without clear intention or necessity.
Other Events Includes seatbelt violations or distraction events.

Table 2: Primary Event Categories for Annotation.

Sub-Event Options
Lane Cut Off Proper use of turn signal,Improper use of turn signal
Lane Change Proper use of turn signal, Improper use of turn signal, To avoid primary event, Root

cause of primary event
Turn (Other Vehicles) Proper use of turn signal, Improper use of turn signal
Turn (Ego Vehicle) Proper use of turn signal (listen to the audio), Improper use of turn signal
Signs of Aggressive Reaction Vehicle maneuver, Aggressive language, Honk, None, Unknown
Signs of Distraction Smoking, Mobile phone, Playing with hair, Drinking, Eating, Picking something from

the floor, Reaching behind the backseat, Yawning, None, Unknown
Weather Condition Clear, Rainy, Foggy, Snowy
Road Condition Dry, Wet, Icy
Visibility Condition Clear, Poor
Road Information Highway, Highway merge, Local road, Intersection, 3-leg intersection, School zone,

Construction zone, Residential area, Rural roads, Tunnel, Pedestrian crossroad
Speed Management Decrease, Maintain, Increase

Table 3: Sub-Event Categories and Options.

Train Validation Test

Samples 1,719 215 215
Duration (s) 18,720 2,311 2,371
Frames 561,223 69,291 72,836

Table 4: Dataset statistics.

3.1 Task

We evaluate LVLMs’ capabilities and challenges
using a conversation-style VQA task related to safe
driving. We provide LVLMs with synchronized
driver-facing and road-facing videos captured using
RGB cameras and then ask the LVLMs to explain
what happens in the video and generate instructions
for safe driving.

3.2 Video Collection

We collected vehicle speed and video recordings
from both driver-facing and road-facing RGB cam-
eras and lined them up vertically as unified clips,
placing the road-facing view on the top and the
driver-facing view on the bottom. Each video in
our dataset presents synchronized views of both the
driver and the road.

Parameter Value

Batch size 8
Epoch 3
Learning rate 1e-5
Learning rate scheduler cosine
Adam β1 0.9
Adam β2 0.999
Adam ǫ 1e-8
Precision BF16
Video Max Pixels 16,384
Video Min Pixels 256
Video Maxlen 128
Video FPS 2
Seed 42

Table 5: Hyperparameters for fine-tuning.

3.3 Question Definition

We adopt a Chain-of-Thought (Kojima et al., 2022)
and a conversation-style template to facilitate step-
by-step reasoning. The dataset has two questions:
(1) “What is happening in the video?” and (2)
“What is recommended actions for the ego-car?”.
We refer to the first type as event detection ques-
tions/answers and the second as safe driving in-
struction questions/answers. An example of each
type of question–answer pair is presented in Table 1.
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This Chain-of-Thought format is designed to guide
the model through a reasoning process that first
identifies events in the video and then infers appro-
priate driving actions based on those observations.

3.4 Annotations
To support structured, context-rich labeling of driv-
ing scenarios, we implemented a three-step process.

Primary event selection. An annotator begins by
selecting a single primary event from a predefined
taxonomy of safety-critical driving behaviors, as
listed in Table 2. These events capture the core
nature of the incident.

Sub-event selection. Next, an annotator is encour-
aged to select as many relevant sub-events as neces-
sary to describe the contributing context. These sub-
events, summarized in Table 3, include surround-
ing vehicle behaviors (e.g., lane changes, turn ma-
neuvers), environmental conditions (e.g., weather,
visibility), or behavioral cues (e.g., signs of aggres-
sion). This multi-label scheme enables fine-grained
characterization of complex traffic scenes.

Summary generation. In the final step, a natural
language annotation is automatically generated us-
ing GPT-4o (OpenAI et al., 2024). The model takes
as input the selected primary and sub-events, along
with auxiliary data such as the vehicle’s speed at
the time of the event. Based on this information,
GPT-4o generates a descriptive summary that an-
swers two key questions: “What is happening in
the video?” and “What is recommended actions for
the ego-car?” Finally, experts manually review the
generated descriptions and confirm the quality.

3.5 Data Statistics
Table 4 shows our dataset statistics. A video has an
approximate duration of 10 seconds and 30 frames
per second. The number of primary events and
sub-event options is provided in Appendix A.

4 Experimental Settings

4.1 Dataset
We use our dataset introduced in Section 3 and treat
the videos as two frames per second.

4.2 Models
In this study, we utilize Qwen2.5-VL (Bai et al.,
2025) 3B and 7B models, which are available even

with limited computational resources. We also fine-
tune these models on our dataset. We refer to fine-
tuned Qwen2.5-VL-3B and fine-tuned Qwen2.5-
VL-7B as Qwen2.5-VL-3B (FT) and Qwen2.5-VL-
7B (FT), respectively.

4.3 Training and Inference
Models receive instruction and video inputs, while
auxiliary sensor data, e.g., vehicle speed, was incor-
porated during dataset construction. This approach
reflects the practical consideration that dashcams
are easily deployable, whereas sensor installation
requires additional costs.

Training. We freeze the vision encoder and train
only the language model with full-parameter super-
vised fine-tuning. LVLMs fine-tuning is conducted
using the LLaMA-Factory (Zheng et al., 2024) with
DeepSpeed ZeRO stage 2 (Rajbhandari et al., 2020).
We fine-tuned LVLMs using eight NVIDIA A100-
SXM4-40GB GPUs and used LLaMA-Factory ver-
sion 0.9.2.dev0 with minor modifications to load
models correctly. Table 5 provides the hyperparam-
eters.

Inference. We test LVLMs and fine-tuned
LVLMs under the zero-shot setting. The evalua-
tions are performed on an NVIDIA L4 GPU.

4.4 Metrics
We evaluate the quality of generated text by com-
paring it to the reference text in the dataset us-
ing BERTScore (Zhang* et al., 2020) and BLEU
socres (Papineni et al., 2002) as evaluation met-
rics. We use the original implementation1 for
BERTScore using RoBERTa (Liu et al., 2019) and
sacreBLEU (Post, 2018)2 for BLEU scores.

5 Result and Discussion
Table 6 shows the results of each model on our
dataset, and Tables 7 and 8 show the samples of
generated text for event detection and safe driving
instruction. Before fine-tuning, Qwen2.5-VL-3B
performs better in terms of F1 score on BERTScore
for the safe driving instruction than Qwen2.5-VL-
7B, while the 7B model outperforms the 3B model
in event detection. This suggests that the parameter
size is irrelevant to the task performance of pre-
trained models. Fine-tuning improves both BERT
scores and BLEU scores, indicating that models
can learn this task correctly.

1https://github.com/Tiiiger/bert_score
2https://github.com/mjpost/sacrebleu
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Event Detection Safe Driving Instruction

Model P R F1 BLEU P R F1 BLEU

Qwen2.5-VL-3B*† 0.8180*† 0.8504*† 0.8337*† 1.44*† 0.8273*† 0.8590*† 0.8426*† 1.66*†
Qwen2.5-VL-7B 0.8235*† 0.8498*† 0.8364*† 1.26*† 0.8086*† 0.8662*† 0.8364*† 1.15*†
Qwen2.5-VL-3B (FT) 0.8901*† 0.9041*† 0.8970*† 10.59* 0.8935*† 0.8954*† 0.8944*† 11.83*†
Qwen2.5-VL-7B (FT) 0.8999*† 0.9070*† 0.8983*† 10.24* 0.8994*† 0.9002*† 0.8997*† 13.40*†

Table 6: Results of event detection and safe driving instruction tasks. Metrics include BERTScore Precision (P),
Recall (R), F1, and BLEU. We performed statistical significance tests using 10,000 bootstrap resamples with a
significance level of p = 0.05. * and † indicate statistically significant differences between fine-tuned and non-
fine-tuned conditions and across models, respectively. The performance differences across models and between
fine-tuning and non-fine-tuning conditions are statistically significant, except for the BLEU scores for the event
detection between Qwen2.5-VL-3B (FT) and Qwen2.5-VL-7B (FT)

Question What is happening in the video?

Ground-truth
The environment is icy with clear weather as you approach an intersection. A
rolling stop occurs as you navigate the intersection at 8 mph while properly
using your turn signal.

Qwen2.5-VL 3B

The video shows a split-screen view of a snowy street scene and the interior
of a vehicle. The top half of the screen captures the outside view, showing a
snow-covered road with tire tracks, buildings on either side, and a stop sign
ahead. The bottom half of the screen shows the inside of the vehicle, where a
person is driving. The driver appears to be looking straight ahead, and there
is a piece of paper or document on the dashboard. The scene suggests that the
driver is navigating through a snowy environment, possibly preparing to make a
turn or stop at the stop sign.
[BERTScore] P: 0.8202, R: 0.8554, F: 0.8374 [BLEU] 0.5540

Qwen2.5-VL 7B

The video shows a first-person perspective from inside a vehicle, likely a truck
or bus, as it drives through a snowy town. The view alternates between the
road ahead and the interior of the vehicle, where a person is driving. The road
appears to be partially cleared of snow, with patches of snow on the sides. There
are buildings on both sides of the road, some of which have signs indicating they
are businesses. The driver is focused on the road, and there are other vehicles
visible in the background, including a white car and an orange vehicle parked
near a building labeled “Body Shop.” The weather seems overcast, and the
ground is covered with snow.
[BERTScore] P: 0.8139, R: 0.8439, F: 0.8286 [BLEU] 0.4693

Qwen3.5-VL 3B (FT)

The weather is clear and the road conditions are dry as you approach an inter-
section. You perform a rolling stop at the intersection, maintaining a speed of
10 mph. There are no signs of distraction or aggressive reaction from your side.
[BERTScore] P: 0.8997, R: 0.9149, F: 0.9072 [BLEU] 14.3398

Qwen2.5-VL 7B (FT)

The environment around you is snowy with icy road conditions, making it
challenging to drive safely. You approach an intersection and perform a rolling
stop at 10 mph while using aggressive language.
[BERTScore] P: 0.9132, R: 0.9202, F: 0.9167 [BLEU] 7.6260

Table 7: Sample ground-truth and generated sentences of Qwen2.5-VL 3B in event detection with evaluation metrics
include BERTScore Precision (P), Recall (R), F1, and BLEU.

5.1 Result Comparison

Parameter size influence. The difference in the
F1 score of BERTScore between Qwen2.5-VL-3B
and Qwen2.5-VL-7B on the event detection was

not significant, indicating that the performance of
the event detection task is saturated in the zero-shot
setting. The results demonstrate that the 3B model
performs better for safe driving instruction than the
7B model, which can be attributed to the output
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Question What is recommended actions for the ego-car?

Ground-truth \ud83d\udca1Paying extra attention to road conditions due to ice is important. Make sure to
bring your vehicle to a complete stop at intersections to ensure safety, especially in icy conditions
where stopping distances are longer.

Qwen2.5-VL
3B

Based on the video description, the recommended action for the ego-car (the vehicle being driven)
would be to follow the instructions given by the driver. Since the driver is looking straight ahead
and appears to be focused on the road, it is likely that they have made a decision about the next
move. The driver may be preparing to make a turn or stop at the stop sign. Therefore, the ego-car
should follow the driver’s instructions and navigate accordingly. This could involve accelerating,
decelerating, or changing lanes as directed by the driver.
[BERTScore] P: 0.8356, R: 0.8400, F: 0.8378 [BLEU] 1.0798

Qwen2.5-VL
7B

In the context of the video, the ego-car (the vehicle being driven) is navigating a snowy
environment. Here are some recommended actions that could help ensure safe driving:

1. **Drive Slowly**: Snowy roads can be slippery, so reducing speed helps maintain
better control of the vehicle.

2. **Maintain a Safe Following Distance**: Increase the distance between your vehicle
and the one in front to allow more time to react to any sudden stops or changes in traffic conditions.

3. **Use Low Beams**: If visibility is reduced due to snow or ice, use low beams to
improve visibility without causing glare for other drivers.

4. **Avoid\u6025\u8f6c\u5f2f (Sharp Turns)**: Snow can cause the tires to lose trac-
tion, making sharp turns particularly dangerous. Try to avoid them if possible.

5. **Check Tires**: Ensure that your tires have adequate tread depth and are properly
inflated. Snow chains may also be necessary in very snowy conditions.

6. **Be Aware of Other Vehicles**: Watch out for other vehicles, especially those that
might be struggling to navigate the snow. Be prepared to stop or slow down if necessary.

7. **Stay Alert**: Snowy conditions can be deceptive, and visibility might be reduced.
Stay alert and be ready to react to any changes in the road or traffic.

8. **Use Turn Signals**: Signal your intentions clearly to other drivers, especially
when changing lanes or turning.

9. **Keep a Full Tank of Fuel**: Snowy conditions can lead to unexpected delays, so
having enough fuel is crucial.

10. **Plan Your Route**: If possible, plan your route in advance to avoid areas with
heavy snow accumulation or icy patches.

By following these recommendations, the ego-car can navigate the snowy conditions
safely and efficiently.
[BERTScore] P: 0.8089, R: 0.8662, F: 0.8366 [BLEU] 0.4625

Qwen2.5-VL
3B (FT)

While it’s good that you’re paying attention to the road, it’s important to come to a complete stop
at intersections to ensure safety and compliance with traffic laws. Practice making full stops to
improve your driving skills and enhance safety.
[BERTScore] P: 0.9062, R: 0.8896, F: 0.8978 [BLEU] 22.1907

Qwen2.5-VL
7B (FT)

\ud83d\udca1In icy and snowy conditions, it’s crucial to come to a complete stop at intersections
to ensure safety. Try to remain calm and avoid aggressive language as it can distract from the
primary task of driving safely.
[BERTScore] P: 0.9142, R: 0.9243, F: 0.9192 [BLEU] 22.2504

Table 8: Sample ground-truth and generated sentences of Qwen2.5-VL 3 in safe drivinginstruction with evaluation
metrics include BERTScore Precision (P), Recall (R), F1, and BLEU.

tendencies in the 7B model. The 7B model outputs
general recommendations for safe driving instruc-
tion before fine-tuning, as shown in Table 9, result-
ing in lower precision and higher recall. For further

analysis, we also computed self-BLEU scores (Zhu
et al., 2018) for each event using the outputs gen-
erated by each model to assess diversity. The self-
BLEU scores, as shown in Table 10, also indicate
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Model & Event Type Top-10 4-gram words

Qwen2.5-VL-3B
Event Detection half of the video; The video shows a; top half of the; The video shows two; the interior of

the; The top half of; bottom half of the; The bottom half of; The interior of the; interior of
the vehicle.

Safe Driving Instuction Based on the video; on the video description,; the ego-car (the vehicle; for the ego-car
(the; there are no specific; are no specific actions; recommended actions for the; the video
description, there; video description, there are; a safe distance from.

Qwen2.5-VL-3B (FT)
Event Detection no signs of distraction; signs of distraction or; of distraction or aggressive; There are no

signs; are no signs of; The footage shows you; footage shows you driving; distraction or
aggressive reaction; or aggressive reaction from; aggressive reaction from your.

Safe Driving Instruction While it’s good that; come to a complete; to a complete stop; a complete stop at; it’s good
that you’re; to come to a; it’s important to come; important to come to; complete stop at
intersections; stop at intersections to.

Qwen2.5-VL-7B
Event Detection The video appears to; half of the screen; of the screen shows; the screen shows the; video

appears to be; the interior of the; appears to be a; shows the interior of; to be a split-screen;
be a split-screen view.

Safe Driving Instruction In the context of; the context of the; are some general recommendations; some general
recommendations for; the ego-car (the vehicle; context of the video,; a safe distance from;
ego-car (the vehicle being; distance from the vehicle; for the ego-car (the.

Qwen2.5-VL-7B (FT)
Event Detection signs of distraction or; of distraction or aggressive; no signs of distraction; There are no

signs; are no signs of; clear weather and dry; weather and dry road; The footage shows
you; footage shows you driving; and dry road conditions.

Safe Driving Instruction come to a complete; to a complete stop; a complete stop at; increase your following
distance; maintain a safe following; your following distance to; to maintain a safe; a safe
following distance; important to maintain a; safe following distance to.

Table 9: The top 10 4-grams in each response.

Detection Instruction

Qwen2.5-VL-3B 84.4359 82.8134
Qwen2.5-VL-7B 83.6289 85.7856
Qwen2.5-VL-3B (FT) 96.4625 95.8846
Qwen2.5-VL-7B (FT) 95.5442 93.5108

Table 10: Self-BLEU scores. “Detection” and “Instruc-
tion” denote “Event Detection” and “Safe Driving In-
struction”, respectively.

that the 7B model outputs less diverse texts for the
safe driving instruction when compared with the
3B model.

Performance improvement by fine-tuning.
Fine-tuning improves overall performance, and
Qwen2.5-VL-7B (FT) outperforms Qwen2.5-VL-
3B (FT) on both tasks in terms of BERTScore,
while Qwen2.5-VL-3B outperforms Qwen2.5-
VL-7B before fine-tuning. Figures 3, 4 5 and
6 also show that fine-tuning improves overall
performance. On the other hand, Table 6 shows
that the difference in the BLEU scores between
both fine-tuned models on the event detection
task is not significant. This suggests that a
larger parameter size has a positive effect on the
fine-tuning performance of LVLMs for this task.

In contrast, the final performance after fine-tuning
remains consistent across model sizes with respect
to BLEU scores.

5.2 Error Analysis

We focus on the subset of samples for which
BERTScore of the safe driving instruction falls
within the bottom 25%. Approximately 4% of all
the samples are shared across the bottom 25% sub-
sets for all models, which we refer to as the “difficult
subset”. Within this subset, 33% of the samples are
annotated as good driving, and another 33% involve
scenarios where the ego-car is turning right and left.
Although all models generated recommendations
to improve already good driving behaviors, the sug-
gestions for safer driving varied slightly, resulting
in relatively low scores.

For the turning right and left scenarios, the gold
answers typically recommend turning while reduc-
ing speed. However, even fine-tuned models pro-
duced irrelevant suggestions, such as mentioning
a stop sign not presented in the video. These ob-
servations suggest that while fine-tuned models are
capable of generating various safety-related sug-
gestions, they still struggle to detect issues such as
excessive speed during turns.
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Figure 3: Score distribution of BERTScore F1 of event detection.
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Figure 4: Score distribution of BLEU of event detection.
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Figure 5: Score distribution of BERTScore F1 of safe driving instruction.
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Figure 6: Score distribution of BLEU of safe driving instruction.

In the difficult subset, approximately 10% have er-
rors related to the driver-facing view, where a driver
holds and uses a phone while keeping their eyes on
the road. This might suggest that LVLMs can pro-
vide safe driving instruction regarding drivers’ be-
haviors, while they struggle to generate it regarding
vehicle behaviors. This phenomenon is explained
by the relative ease with which LVLMs can detect
a driver holding an object, as opposed to estimat-
ing vehicle speed, which requires more temporal
reasoning.

5.3 Unimodal Biases

As discussed in Section 5.1, in several cases, pre-
trained models provide general suggestions regard-
less of the videos, as shown in Table 8. We also ob-
served that the fine-tuned models mentioned objects

not presented in the video in Section 5.2. This be-
havior can be attributed to unimodal biases, specif-
ically language biases (Goyal et al., 2017; Agrawal
et al., 2018; Zhu et al., 2020; Abbasnejad et al.,
2020; Chen et al., 2024), where models’ outputs
are biased toward textual information in the given
inputs. However, while language biases have been
attributed to the model’s learning of the relation-
ships between question-answer pairs in the training
data (Agrawal et al., 2018), it is unclear whether the
training data includes question-answer pairs regard-
ing safe driving instruction. Given that Sakajo et al.
(2025) observed the model generating identical an-
swers for different images with the same question in
a phonetics-related VQA task, our findings suggest
that language priors emerge in certain domains.
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5.4 Task Difficulty and Application Possibility
The results reveal that this task is challenging for
LVLMs without fine-tuning, whereas fine-tuning
improves performance. Our error analysis in Sec-
tion 5.2 also indicates that several failure cases hap-
pen for good driving videos, and suggestions for
safer driving vary slightly. Those discussions sug-
gest that our fine-tuned models can be applied to
safe driving instruction systems, although several
challenges remain in certain situations, such as in-
structing against a harsh turn.

6 Conclusion
In this study, we constructed a dataset comprising
synchronized driver-facing and road-facing video
streams, along with step-by-step question–answer
pairs. We fine-tuned LVLMs on our dataset for
safe driving instructions and investigated their ca-
pabilities and performance in detecting risky events
and providing safe driving instructions. Our experi-
mental results reveal that fine-tuned LVLMs demon-
strate the capability of suggesting safety-aware driv-
ing instructions, while detecting several events re-
mains challenging, even for fine-tuned models. Our
findings suggest that LVLMs can be safe driving in-
structors, although there is room for improvement.

Limitations
Dataset size. As described in Section 3, our
dataset comprises 1,719 training samples, 215 vali-
dation samples, and 215 test samples, which can be
considered relatively small in scale. However, the
collection of synchronized driver-facing and road-
facing views requires a complicated setup, charac-
terizing this task as a low-resource scenario. In this
study, we investigated model performance using the
current dataset as an initial step, with evaluation on
a larger dataset left for future work.

Dataset quality. The instructions in our dataset
were generated using GPT-4o, which might raise
concerns regarding their quality. However, as de-
tailed in Section 3, the generated texts were manu-
ally reviewed to ensure the quality.

Model selection. In this study, we selected two
base models: Qwen2.5-VL-3B and Qwen2.5-VL-
7B. While this choice might constrain our investiga-
tion of the scaling law in this task and performance
variation across models, it remains justifiable. The
Qwen2.5-VL series achieves advanced performance
on various benchmarks, including Video-MME (Fu

et al., 2024), and our objective is to evaluate model
effectiveness for driving instruction. Accordingly,
focusing on the Qwen2.5-VL series and its relatively
small variants is appropriate for our investigation.

Ethical Considerations
Our dataset contains videos that capture drivers.
We collect these videos legitimately and use them
within the prescribed scope.
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A Dataset Statistics (Detail)
Table 11 shows the number of events or options in
each dataset split.

Train Val. Test

Primary Events
Crash 3 0 0
Forward Collision Warning 41 6 7
Tailgating 90 21 7
Harsh Brake 253 20 26
Harsh Turn 15 4 2
Rolling Stop 308 42 42
Mobile Usage 87 14 11
Inattentive Driving 142 17 20
Lane Departure 0 0 0

Sub Events
Lane Cut Off

Improper use of turn signal 18 3 0
Proper use of turn signal 21 7 1

Lane Change
Improper use of turn signal 11 0 1
Proper use of turn signal 84 11 9
To avoid primary event 21 2 3
Root cause of primary event 24 3 2

Turn (Other Vehicles)
Proper use of turn signal 10 1 3
Improper use of turn signal 3 0 0

Turn (Ego Vehicle)
Proper use of turn signal 114 15 20
Improper use of turn signal 102 18 10

Signs of Aggressive Reaction
Vehicle maneuver 1 0 0
Aggressive language 18 1 2
Honk 9 2 0
None 634 72 85
Unknown (Dashcam Issue) 209 30 25

Signs of Distraction
Smoking 26 3 5
Mobile phone 18 3 2
Playing with hair 2 1 0
Drinking 14 0 2
Eating 18 2 3
Picking something from floor 2 0 1
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Reaching behind backseat 0 1 0
Yawning 1 0 0
None 580 63 75
Unknown 218 32 25

Weather Condition
Clear 1380 184 172
Rainy 92 6 10
Foggy 0 1 0
Snowy 60 7 9

Road Condition
Dry 1362 181 170
Wet 98 6 11
Icy 72 11 11

Visibility Condition
Clear 0 0 0
Poor 0 0 0

Road Information
Highway 893 124 102
Highway merge 22 3 2
Local Road 8 0 0
Intersection 348 28 46
3-Leg intersection 166 31 26
School zone 0 1 0
Construction Zone 10 3 2
Residential area 66 8 14
Rural roads 12 2 1
Tunnel 1 0 0
Pedestrian crossroad 22 2 1
Parking 27 2 6

Speed Management
Decrease 37 5 1
Maintain 409 59 48
Increase 43 9 1

Table 11: The number of each event or option in each
dataset split. Val. denotes the validation set.
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Abstract

The 2025 Multimodal Models for Low-
Resource Contexts and Social Impact (MM-
LoSo) Language Challenge addresses one of In-
dia’s most pressing linguistic gaps: the shortage
of resources for its diverse low-resource lan-
guages (LRLs). The challenge focuses on de-
veloping a translation model capable of translat-
ing between High resource languages (HRLs)
(Hindi/English) and LRLs (Bhili, Mundari,
Santali, and Gondi). In this study, we use
the MMLoSo 2025 challenge dataset to in-
vestigate whether enforcing cross-lingual sim-
ilarity in specific internal layers of a decoder-
only multilingual large language model (LLM)
can improve translation quality from LRLs
to HRLs. Specifically, we combine Centered
Kernel Alignment (CKA), a similarity met-
ric that encourages representations of differ-
ent languages to align with Representation Pro-
jection Invariance (REPINA), a regularization
method that constrains parameter updates to re-
main close to the pretrained model, into a joint
method, we call TRepLiNa (CKA + REPINA).
Our results1 show that aligning mid-level lay-
ers with TRepLiNa is a low-cost and practical
way to improve LRL translation in data-scarce
settings. We make our code and models public.

1 Introduction

Many multilingual LLMs share parameters across
languages, yet transfer to low-resource languages
(LRLs) often lags behind their performance on
high-resource languages (HRLs) (Conneau et al.,
2020; Zhang et al., 2020). Recent analysis of
Aya-23 8B (Aryabumi et al., 2024), a multilin-
gual decoder-only model, shows strong neuron
overlap across related languages in the embedding
layer, perhaps due to token overlap, but it exhibits a
marked drop in overlap at intermediate and higher

1https : / / github . com / konta3738 /
cka-repina-aya23

layers (Trinley et al., 2025). This suggests a sim-
ple hypothesis: selectively increasing cross-lingual
similarity where it is weakest (mid/high layers) may
lead to better transfer for LRLs. We focus only on
the LRL→HRL translation, based on the intuition
that models generally find it easier to understand a
new language than to generate it (Lin et al., 2025).
We operationalize this via a lightweight alignment
loss between hidden representations of parallel sen-
tences, which is applied at a chosen layer ℓ. We use
centered kernel alignment (CKA) (Kornblith et al.,
2019), which can robustly compare representations
across networks and layers, together with repre-
sentation projection invariance (REPINA) (Raz-
daibiedina et al., 2023) to stabilize HRL features
against representation drift. We perform experi-
ments, using zero-shot (Zhao et al., 2023), few-shot
(Karimi Mahabadi et al., 2022) and QLoRA-based
fine-tuning (Zhang et al., 2023) on Aya-23 8B,
using the MMLoSo benchmark (lrl, 2025) pairs,
Hindi/English pivots as HRLs; Bhili (Indo-Aryan),
Mundari (Austro-asiatic), Santali (Austro-asiatic)
and Gondi (Dravidian) as LRLs.

Our work makes the following contributions:

• We present, to the best of our knowledge, the
first systematic study of layer-wise alignment
in a decoder-only LLM for low-resource ma-
chine translation (MT), comparing CKA and
TRepLiNa (CKA+REPINA) across layers.

• We demonstrate that mid-layer alignment
(roughly layers 10–15) is most effective, with
TRepLiNa consistently favoring layer 15 in
limited-data settings.

• We show improvements in the weighted
composite score of BLEU (Papineni et al.,
2002) and ChrF (Popović, 2015), defined as
(0.6×BLEU+0.4×ChrF) with TRepLiNa and
provide guidelines on when and where align-
ment should be applied.
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2 Related Work

Low-Resource Transfer Methods for Indic
LRLs: Alongside alignment-based methods,
zero-shot and few-shot strategies have also been ex-
plored for Indic LRLs. Huidrom and Lepage (2020)
show that a single multilingual Neural Machine
Translation (NMT) model can translate between
unseen Indian language pairs, with performance
improving as small amounts of parallel data are
added. Ghosal et al. (2025) address the problem
of improving few-shot generation for Indic LRLs
through prompt refinement for MT and other down-
stream generation tasks. Their findings highlight
the importance of designing techniques that en-
hance low-resource performance. While they focus
on input-level prompting, we complement this by
aligning hidden representations across layers to
improve transfer for Indic LRLs.

Cross-lingual Alignment Methods: Cross-
lingual alignment has long been studied as a
way to enhance transfer in multilingual mod-
els, particularly for LRLs (Hämmerl et al.,
2024). Post-hoc cross-lingual alignment meth-
ods rotate representations after training, e.g.,
SVD/orthogonal Procrustes or projection-based
removal of language-specific components, im-
proving zero-shot transfer (Deb et al., 2023; Yang
et al., 2021). Joint optimization injects alignment
during training, e.g., cosine-similarity objectives
on parallel sentences or contrastive InfoNCE
setups (Wieting et al., 2019; Pan et al., 2021)
while balancing negatives. CKA has emerged as a
computationally attractive alternative to Canonical
Correlation Analysis (CCA) (Hotelling, 1936)
for comparing intermediate activations and for
distillation/analysis (Dasgupta and Cohn, 2025).
REPINA (Razdaibiedina et al., 2023) regularizes
against representation collapse/drift. We apply
these ideas to layer-wise alignment in Aya-23 8B
for LRL MT.2

3 Data

In this research project, we use the MMLoSo
shared task train dataset (lrl, 2025) for the exper-
iments with roughly 20k sentence pairs per di-
rection, splitting the dataset into 95% train and
5% development. The language pairs include

2We focus on CKA here; exploring cosine/contrastive or
newer similarity objectives (e.g., Listopad 2025) is left to
future work.

Bhili↔Hindi, Mundari↔Hindi, Gondi↔Hindi (all
in Devanagari script) and Santali↔English ( San-
tali in Ol Chiki script and English in Roman script).
Our initial tokenization analysis of the data shows
that Santali has higher tokenization fertility. It of-
ten requires a longer maximum sequence length
(368) than Hindi/English (256), which can slightly
reduce the tokenwise parallelism available to the
alignment loss when sequences must be truncated
to apply CKA.

4 Methodology and Experiments

In our experiments, we focus on Aya-23 8B, a
strong openly available model with broad typolog-
ical coverage and robust multilingual capabilities.
The model is pretrained on 23 languages, including
Hindi and English, but it does not cover Mundari,
Bhili, Gondi, or Santali. We issue all prompts in-
structions in English.

4.1 Prompting

Here, we discuss the zero-shot and few-shot
prompting methods that are used in the experi-
ments.

Zero-shot: In zero-shot experiments, the model
relies on its knowledge without any examples
(Chikkala et al., 2025). We consider zero-shot as
the baseline for the experiments. See Figure 3 for
zero-shot prompt template in the Appendix.

Few-shot: In few-shot experiments, we use ex-
amples for each language pair from the train set as
reference for the language model (Anikina et al.,
2025). For each language pair, we use the first ex-
ample from the training split of the provided data
for one-shot, the first three for three-shot, and the
first five for five-shot. See Figure 4 for few-shot
prompt template in the Appendix.

4.2 TRepLiNa

This section describes the alignment objective of
TRepLiNa. Figure 1 illustrates an overview of our
proposed training method.

Given a parallel pair (x(A), x(B)) from an LRL
A and a pivot HRL B, let H(A)

ℓ , H
(B)
ℓ ∈ RT×d

denote token wise hidden states at layer ℓ (se-
quence length T , width d) and H

(A)
pre ℓ be the hidden

states obtained from the pretrained model (with
an adapter disabled). We augment the MT loss
(token-level cross entropy) LMT with (i) a CKA
alignment between LRL/HRL representations and
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Figure 1: Proposed alignment architecture. Under CKA-only, both HRL and LRL representations drift toward each
other, potentially distorting HRL features. By contrast, TRepLiNa constrains HRL representations while guiding
LRL representations toward them, achieving targeted alignment without degrading HRL quality. Here, m and n
denote the number of transformer blocks before and after the target alignment layer, respectively.

(ii) a REPINA anchoring term that resists drift of
HRL features:

L = LMT + λLCKA + µLREPINA (1)

with λ, µ > 0. We use linear CKA on
mean–centered features:

LCKA = 1− CKA(H
(A)
ℓ , H

(B)
ℓ ),

CKA(H
(A)
ℓ , H

(B)
ℓ ) =

∥X⊤Y ∥2F√
∥X⊤X∥2F

√
∥Y ⊤Y ∥2F

.
(2)

F denotes Frobenius norm. X and Y represent the
matrices after applying mean-centering on H

(A)
ℓ

and H
(B)
ℓ respectively. For REPINA, we anchor

HRL states to a stop-gradient identity mapping of
a reference pass, i.e.,

LREPINA
(
H

(A)
pre ℓ, H

(A)
ℓ

)
=

∥∥H(A)
pre ℓ − φ̃

(
H

(A)
ℓ

) ∥∥2

2
, (3)

Equivalently, ϕ̃(·) = sg(·); in our implementation
this is the detached HRL hidden state at the same
layer from the forward pass. CKA pulls A toward
B at layer ℓ, while REPINA stabilizes B. Unless
noted, both terms are applied at a single layer ℓ.

4.3 Experimental Design
Step 1: Layer sweep (small data): To make
the sweep computationally tractable, we sam-
ple 1,000 parallel pairs and train for one
epoch per direction (Mundari → Hindi, San-
tali → English). We sweep layers ℓ ∈
{1, 2, 5, 10, 15, 20, 25, 30, 31, 32} and evaluate
CKA-only and TRepLiNa (CKA+REPINA)

against two baselines NoAlign and REPINA-only.
For REPINA-only, we fix ℓ= 15 (the best layer
observed under TRepLiNa) to isolate the marginal
contribution of CKA. We set λ=µ=0.05, values
that are large enough to reveal effects at this data
scale, yet small enough to avoid the over-alignment;
larger CKA weights (e.g., λ=0.3) degraded MT
performance in preliminary runs. The NoAlign
(standard QLoRA finetuning) excludes both CKA
and REPINA.

Step 2: Longer training at the best layer: Us-
ing the best layer from Step 1, we train for up to
5 epochs and track BLEU/ChrF on a 500-sample
development set each epoch, comparing TRepLiNa
vs. REPINA-only (λ = 0.01, µ = 0.05).

5 Results and Analysis

Here, we analyze the results of zero-shot, few-shot,
TRepLiNa, REPINA and NoAlign from Table 1

5.1 Step 1: Layer-Wise Trends
The result is discussed for 1k pairs and 1 epoch.
For Mundari–Hindi, the weighted composite score
across layers improves (see Figure 2). CKA peaks
at layer 10, whereas TRepLiNa peaks at layer 15;
the same tendency holds for Santali–English (see
Appendix B.1).

Interpretation: CKA-only encourages both lan-
guages to meet in the middle; without a stabilizer,
HRL features may drift, which can blunt gains in
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Language Zeroshot Few-shot (1) Few-shot (3) Few-shot (5) TRepLiNa (Ours) REPINA-only NoAlign

Bhili→Hindi 4.75 4.54 4.84 3.96 47.96 48.02 48.01
Gondi→Hindi 4.39 3.66 3.75 3.99 36.26 36.18 36.25
Mundari→Hindi 3.54 3.00 3.01 3.24 34.24 33.45 33.36
Santali→English 1.38 1.77 1.05 1.16 33.02 32.28 32.14

Table 1: Final translation scores across language pairs (0.6 × BLEU + 0.4 × ChrF). Best scores are in bold.

Figure 2: Comparison of (0.6× BLEU +0.4×
ChrF) across layers for CKA, REPINA, NoAlign and
TRepLiNa.

later layers. REPINA counteracts this, making mid-
high layers (15) the sweet spot when pairing with
CKA.

5.2 Step 2: Multi-Epoch Comparison at
Selected Layer

Setup: Using the best alignment layer from
Step 1 (typically a mid-layer around ℓ= 15), we
train for up to five epochs on the full split (≈20k
pairs) and evaluate after each epoch on a 500-
sample development set. Unless noted otherwise,
we set (λ, µ) = (0.01, 0.05) for this longer run, i.e.,
a lower CKA weight than in Step 1 to avoid over-
regularization at scale. We report the MMLoSo
score (0.6×BLEU + 0.4×ChrF) and also track
BLEU/ChrF separately (Appendix Table 2). Model
selection uses the best development set checkpoint
per direction.

5.3 Findings

Gondi→Hindi: TRepLiNa attains the highest
performance score exceeding zero-shot perfor-
mance. Few-shot(1) has the lowest score, the gap
between the highest and lowest performance scores
is 32.6.

Mundari→Hindi: TRepLiNa achieves the best
score on development set outperforming zero-shot,

while few-shot(1) has the lowest score, the differ-
ence between the best and the lowest performance
score is 29.24.

Santali→English: TRepLiNa has the best per-
formance score surpassing zero-shot, whereas Few-
shot(3) has the lowest score. A difference of 31.97
exists between the best and worst performance
scores. For comparison Billah et al. (2024) report
a BLEU of 11.13 on their development set; our
result (Appendix Table 2) is 25.24 BLEU, a +14.11
absolute and ≈2.27× relative improvement.

Bhili→Hindi: REPINA-only has the highest
score, it could be because Bhili and Hindi are typo-
logically close, a strong CKA weight can over-align
and wash out beneficial language-specific features.
However, our approach TRepLiNa performs better
than zero-shot. Few-shot(5) has the lowest score,
The highest score exceeds the lowest by 44.06.

Takeaways: (i) Early vs. late epochs: NoAlign
shows stronger performance in the initial stages
of training with 1k inputs (see Figure 2), whereas
REPINA-only tends to surpass it when trained on
larger datasets (20k). (ii) Data scaling: Larger
datasets favor a lower CKA weight; we used
λ= 0.05 for the 1k/1-epoch sweep and λ= 0.01
for 20k/5-epoch training. As cross-lingual repre-
sentations become sufficiently aligned, excessive
CKA pressure can erode language-specific cues.
(iii) Language proximity: For related pairs (e.g.,
Bhili–Hindi), We recommend reducing λ; for more
distant pairs, mid-layer TRepLiNa remains robust.

6 Conclusions

In this paper, we investigate layer-wise alignment
as a simple and effective strategy for improving
low-resource translation using Aya-23 8B on MM-
LoSo language pairs. We show that aligning repre-
sentations at mid layers enhances performance on
translation tasks between language pairs, and that
coupling similarity (CKA) with stability (REPINA)
in our proposed TRepLiNa method yields robust
gains across data-scarce settings.
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Limitations

We do not explore other similarity objectives (co-
sine, contrastive InfoNCE) or recent proposals
(Listopad, 2025); we use coefficients (λ, µ) without
scheduler/tuning; and this study does not include
a thorough ablation study of the hyperparameters
(λ, µ). In our experiments, we have not explored
chain of thought prompting techniques and differ-
ent prompt templates. From the results Table 1,
we observe that there is a reduced performance
of TRepLiNa on Bhili→Hindi, where it underper-
forms the REPINA-only and NoAlign methods.
These results indicate that our method may not
generalize well to all language pairs. Santali to-
kenization sometimes requires longer sequences
than 256, reducing token-wise overlap for align-
ment when truncation occurs. We do not evaluate
human adequacy/fluency or domain transfer and
qualitative analysis of the generated output by the
models.
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A Appendix: Training and
Implementation Details

A.1 Codebase and Reproducibility

We provide a single-script trainer for QLoRA
fine-tuning of Aya-23 with layer-wise align-
ment. Seeds are fixed for Python and Py-
Torch (CPU/GPU). All console/file logs are times-
tamped; training/eval logs are written via helper
functions (write train log, write eval log).
LoRA adapters are pushed to a Hugging Face repo
using access tokens from environment variables.

A.2 Model, Quantization, and LoRA

We load CohereLabs/aya-23-8B with 4-bit
NF4 (BitsAndBytes) and bf16 (or fp16). We
enable output hidden states to obtain interme-
diate activations. LoRA is applied to standard
projection modules [q,k,v,o,gate,up,down]
with default (r=16, α=32, dropout=0.05).
We use gradient checkpointing and
enable input require grads() to support
k-bit training.

A.3 Tokenization and Batching

We use a fast tokenizer; if the pad token is
missing, EOS is used as PAD. Causal-LM in-
puts are left-padded; alignment-only passes are
right-padded. Prompts follow: “Translate to
{lang b name}:\n{src}\n”. Labels mask the
prompt with −100. Max lengths are typically 256
(Santali uses 368). We pad to a multiple of 8 for
tensor cores. Global batch size is 1 with gradient
accumulation (default 16).

A.4 Data Splits and Development Set

From a CSV with columns src col/tgt col, we
create train/development set splits. If =<1k ex-
amples, development set =10%; otherwise ≈5%
(capped 1k–2k). Development set evaluation uses
up to 500 examples per epoch.

A.5 Losses and Layer-wise Alignment (No
Equations)

Task loss: We use a label-smoothed causal LM
loss with ϵ = 0.1 over valid target tokens.

Alignment passes (procedure only): For a par-
allel pair from LRL A and HRL B, we:

1. Run source-only strings for both languages to
collect hidden states at a chosen layer ℓ.

2. Mask pads, align sequence lengths (truncate
to maximum), flatten tokens across the batch,
and mean-center features.

3. Compute a similarity score between A and
B at layer ℓ and add its complement as an
alignment penalty.

This is the same CKA objective introduced in the
main text; we omit formulas here and refer the
reader to the Methodology and Experiments section
(Section 4).

REPINA anchoring (procedure only): Periodi-
cally (e.g., every two optimizer steps) we:

1. Disable adapters to obtain a reference HRL
representation at layer ℓ on the same inputs.

2. Penalize the mean-squared deviation between
current and reference HRL hidden states (stop-
gradient on the reference).

This follows the REPINA scheme described in the
main text; equations are intentionally omitted here.

Combined objective: Training minimizes
task loss + similarity penalty + anchoring
penalty with user-set coefficients (--lambda cka,
--mu repina). Both terms are applied at a single
chosen layer ℓ.

A.6 Optimization and Precision
We use PagedAdamW8bit (or AdamW) with β =
(0.9, 0.95), weight decay 0.01, linear warmup
(ratio default 0.05), and LR in [1 × 10−4, 2 ×
10−4] (default 2× 10−4). Mixed precision uses
torch.amp.autocast (bf16/fp16); for fp16, gra-
dients use GradScaler. We clip global gradi-
ents to 1.0 for bf16. Gradients are zeroed with
set to none=True. Optimizer steps occur every
grad accum micro-steps.

A.7 Model and Training Defaults
Unless noted: max source/target 256 (Santali 368),
LR 2×10−4, warmup 5%, batch size 1, grad ac-
cumulation 16, and mixed precision. Layer ℓ is
selected via sweeps; CKA and REPINA use the
same ℓ.

A.8 BLEU and ChrF Results (Per Direction)

Compute, Runtime, and Practical Notes

• Hardware: Experiments are ran on A100
40GB or H100 80GB (QLoRA fits comfort-
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Figure 3: Zero-shot prompt

Figure 4: Few-shot prompt

ably); BF16 preferred when available. Train-
ing took approximately 30 hours on 1 A100
40GB, and 16 hours on 1 H100 80GB.

• Stability: For typologically close pairs (e.g.,
Bhili–Hindi), reduce the similarity weight
over epochs to avoid over-alignment.

• Layer indexing: Hidden state tuple index 0
corresponds to the embedding output; a user
layer ℓ refers to the 1-based transformer block
output.

B Appendix B: Complementary Results

B.1 Step-1: Layer Sweep on Santali→English
With only 1,000 training pairs and a single epoch,
anchoring from REPINA can transiently conflict
with task updates: large anchoring (µ) tends to
pull parameters back toward the reference HRL
representation, partially canceling early task learn-
ing. Empirically, λ=0.05, µ=0.05 underperforms
CKA-only, but reducing anchoring to µ=0.01
makes TRepLiNa outperform CKA-only. Perfor-
mance peaks at ℓ=15, suggesting a mid-layer is
most effective for aligning Santali to English in

Figure 5: Comparison of (0.6 × BLEU + 0.4 ×
ChrF) across layers for CKA and TRepLiNa on
Santali→English (1k rows, 1 epoch). Dashed lines indi-
cate each method’s baseline.
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Language Zeroshot Few-shot (1) Few-shot (3) Few-shot (5) TRepLiNa (Ours) REPINA-only NoAlign

Bhili→Hindi 0.88 0.64 0.93 0.35 40.15 40.26 40.13
Gondi→Hindi 0.37 0.12 0.30 0.56 28.71 28.44 28.64
Mundari→Hindi 0.14 0.06 0.04 0.08 25.94 25.08 24.93
Santali→English 0.04 0.04 0.03 0.05 25.24 24.64 24.26

Table 2: Final translation scores across language pairs (BLEU). Best scores are in bold.

Language Zeroshot Few-shot (1) Few-shot (3) Few-shot (5) TRepLiNa (Ours) REPINA-only NoAlign

Bhili→Hindi 10.57 10.40 10.72 9.38 59.67 59.65 59.84
Gondi→Hindi 10.42 8.97 8.93 9.12 47.58 47.78 47.67
Mundari→Hindi 8.66 7.43 7.48 7.98 46.68 46.02 46.00
Santali→English 3.40 4.39 2.60 2.83 44.68 43.74 43.96

Table 3: Final translation scores across language pairs (ChrF). Best scores are in bold.

this small-data setting. Practical note: for low
data/short training, prefer moderate CKA (λ≈0.05)
with lighter anchoring (µ≈0.01) and sweep mid-
layers (e.g., 10–20).

B.2 BLEU Table: Summary and Takeaways

Table 2 compares final BLEU across settings.
On Mundari→Hindi and Santali→English,
TRepLiNa (CKA+REPINA) achieves the best
scores, outperforming both REPINA-only and
NoAlign. For Bhili→Hindi, REPINA-only nar-
rowly leads. Few-shot and zero-shot remain far
below alignment-based methods, indicating that
explicit layer-wise alignment is crucial in the low-
resource regime.

B.3 ChrF Table: Summary and Takeaways

Table 3 shows the same comparison in ChrF. The
pattern largely mirrors BLEU: TRepLiNa tops
Mundari→Hindi and Santali→English, while
NoAlign is slightly best on Bhili→Hindi. De-
spite small differences between top systems on
Bhili→Hindi, both metrics agree that alignment
generally helps, especially for the more distant
pairs. Overall, ChrF confirms the BLEU trends
and supports the utility of combining CKA with
REPINA.

C Appendix C: Future Directions

Scope: We did not explore HRL → LRL direc-
tions in the main paper due to the asymmetric com-
putational profile of the task and the cost of fine-
tuning Aya-23 8B. Here we provide a preliminary
Step-1 layer sweep on Hindi→Mundari (1k pairs,
1 epoch; λ=0.05, µ=0.05).

Figure 6: Layer sweep on Hindi→Mundari (1k pairs,
1 epoch). We plot 0.6 × BLEU + 0.4 × ChrF for
CKA-only and TRepLiNa; dashed lines denote each
method’s NOALIGN baseline. CKA-only peaks at ℓ=10,
TRepLiNa at ℓ=20.

Setup and metrics: We compare CKA-only and
TRepLiNa against the NoAlign baseline across
layers, using the combined score 0.6 × BLEU +
0.4× ChrF (Figure. 6).

Observations: (i) CKA-only peaks at layer 10
and TRepLiNa peaks at layer 20; both outperform
NOALIGN. (ii) With µ=0.05 and such a small
regime (1k/1 epoch), REPINA can over-regularize,
likely dampening short-term task learning. This
suggests TRepLiNa may be more competitive un-
der larger budgets (e.g., 20k/5 epochs), where the
auxiliary signal has time to synergize with the task
objective.

Layer asymmetry: For LRL → HRL, we ob-
served peaks around layers 10–15 for TRepLiNa,
whereas HRL → LRL peaks later (layer 20). One
plausible explanation is that Aya-23 8B has limited

33



pretrained support for LRL tokens and structures.
When the output is an LRL (e.g., Mundari), later
layers must adapt themselves to generate unseen
languages; when the input is an LRL, earlier layers
need to map LRL signals into language-agnostic
features. We leave a rigorous verification of this
hypothesis to future work.

Future work may extend this approach to en-
coder–decoder or speech–text models, and ex-
plore adaptive scheduling strategies for alignment
strength in truly low-data scenarios.
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Abstract

Memes are now a common means of communi-
cation on social media. Their humor and short
format help messages spread quickly and easily.
Propagandistic memes use both words and im-
ages to influence opinions and behaviors, often
appealing to emotions or ideologies. While
propaganda detection has been well-studied
in high-resource languages (HRLs), there has
been a limited focus on low-resource languages
(LRLs), such as Bengali. In this study, we in-
troduce MemeGuard, a new dataset of 3,745
memes for detecting propaganda in Bengali.
We tested more than 45 different methods, in-
cluding both single and combined approaches
with fusion. For text, BanglaBERT-1 achieved
the best macro F1 score of 80.34%, whereas
the CLIP vision transformer scored 78.94%
for images. The proposed multimodal model,
which combines BanglaBERT-2 and CLIP via
Adaptive Modality Fusion, achieved the high-
est macro-F1 score of 85.36%. This work es-
tablishes a strong baseline and offers valuable
insights for future research in Bengali multi-
modal content analysis.

1 Introduction

Digital platforms have transformed human interac-
tion by altering the ways individuals connect, share
information, and express themselves. The prolif-
eration of the Internet and Web 2.0 applications
has fostered large, dynamic online communities,
enabling rapid and accessible communication. Al-
though digital openness offers significant advan-
tages, it also accelerates the dissemination of mis-
leading information, manipulative influence, and
harmful narratives. On social media, memes func-
tion as a prominent and efficient communication
medium, integrating concise text with impactful
visuals to transmit messages (Zhong and Baghel,
2024). Certain memes are intentionally designed to
manipulate audiences, influence opinions, and pro-
mote bias. These propagandistic memes advance

specific political, religious, cultural, or ideologi-
cal agendas by exploiting emotional responses or
distributing misinformation (Cheng, 2025). As the
influence of memes grows, identifying and analyz-
ing propagandistic content has become essential.
Because meme interpretation depends on both tex-
tual and visual elements, multimodal analysis is
required for accurate detection and classification.
While substantial research has addressed propa-
ganda detection using text-based or multimodal
methods in HRLs, LRLs such as Bengali remain
underexplored. A comprehensive multimodal anal-
ysis for Bengali content is currently unavailable
(Hossain et al., 2025). Detecting propagandistic
memes in Bengali is necessary to support the dis-
semination of accurate information. However, no
prior research has investigated propaganda detec-
tion in Bengali memes, leaving a significant re-
search gap despite the growing prevalence of such
content.

Building an automated system to detect propa-
gandistic memes in Bengali presents several chal-
lenges. One major issue is the lack of a public
dataset and the difficulty of extracting Bengali text
from images, since there is no standard OCR tool
for the language. Labelling memes by hand is also
tricky because propaganda can be interpreted dif-
ferently by different people. Memes often combine
images and text, and the same image with different
text can convey different meanings, adding com-
plexity. Other problems include short text, discrep-
ancies between the image and text, and the need
to integrate both types of information. To address
these problems, this study introduces a dataset of
3,745 Bengali-language memes for detecting pro-
paganda. The study also proposes a transformer-
based model that utilizes BanglaBERT-2 and CLIP,
with an adaptive fusion of text and image features,
to identify propaganda in memes more effectively.
The main contributions of this work are:
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• Developed MemeGuard, a multimodal
dataset containing 3,745 memes, labelling pro-
pagandistic and non-propagandistic.

• Introduced a multimodal framework that com-
bines textual and visual features using a
late fusion strategy, where BanglaBERT-2
and CLIP models are employed with adap-
tive modality fusion to detect propaganda in
memes effectively.

2 Related Work

Several studies have been conducted in various lan-
guages to detect propaganda in memes, including
text, images, and multimodal content. This section
provides a brief review of past studies on detecting
memes, specifically propagandistic memes, across
unimodal (e.g., text and image) and multimodal
content.

2.1 Unimodal-based Propaganda Detection
Text-based propaganda detection has progressed
considerably. Early work applied ML/DL with
word embeddings. Noman et al. (2024) used a
BiLSTM-CRF model for semantic web-based pro-
paganda text, reporting F1 scores of 0.61 on mul-
tilingual and 0.688 on monolingual news data. Li-
chouri et al. (2023) examined disinformation de-
tection using surface and morphological prepro-
cessing, FastText vectors, and weighted TF-IDF
fusion, obtaining a 77.60% F1-micro with LSVC,
though effectiveness remained limited. A three-
stage framework (Sourati et al., 2023) targeted
logical fallacies in manipulative text. Building
on such work, transformers and LLMs have been
widely used for text classification, including pro-
paganda detection. Ojo et al. (2023) conducted
binary detection of persuasion strategies in Arabic
news and tweets, achieving 64.00% F1 with XLM-
RoBERTa. Horák et al. (2024) reported 92.26% F1
using XLM-RoBERTa Large for newspaper texts.
Salman et al. (2023) found strong performance for
code-switched English–Roman Urdu social media
text using XLM-RoBERTa (Roman Urdu) and GPT-
3.5-Turbo. Hasanain et al. (2024a) noted AraBERT
outperforming GPT-4 for news articles, while Piña-
García (2025) applied LLaMA 3.2 to political pro-
paganda on Twitter.

In comparison, propaganda analysis using visu-
als alone has received far less attention than text-
based approaches. Hs et al. (2021) used a DL-based
ResNet-50 model and achieved 48.00% F1. More

recently, Wang and Chen (2025) introduced a hy-
brid method for image-based propaganda detection.
Koutlis et al. (2023) proposed Visual Part Utiliza-
tion (VPU) with a ViT, reaching 94.98% accuracy
but still excluding text. However, unimodal text-
or image-only approaches fail to capture subtle
context and often struggle with patriarchal content,
underscoring the need for models that handle the
complexities of multimedia content.

2.2 Multimodal-based Propaganda Detection

In addition to unimodal analysis, several multi-
modal approaches have been explored. Zaytoon
et al. (2024) combined Bloomz-1b1 and ResNet101
with concatenation fusion for meme propaganda
detection, achieving 80.51% F1-macro, though re-
sults were limited by an imbalanced Arabic dataset.
Mahmoud and Nakov (2024) used VLM-generated
descriptions with MPNet and CLIP-ViT for pro-
paganda detection and multilabel classification, re-
porting 66.67% F1-macro but facing severe imbal-
ance issues. Dimitrov et al. (2021) introduced a
950-meme corpus with 22 strategies, where Visu-
alBERT COCO achieved 48.34% F1-micro, con-
strained by the small, imbalanced dataset. Alam
et al. (2024a) created a 6,000-meme Arabic corpus
with four classes, yielding weighted F1 scores of
69.00% (Qarib), 67.30% (ResNet50), and 65.90%
(ConvNeXt, AraBERT, SVM), again limited by
class imbalance. Qu et al. (2022) released Dis-
infomeme, a 1,170-meme dataset labelled as Dis-
info or Non-Disinfo, where VisualBERT COCO
achieved 53.3% on the BLM subset and 30.60%
on the Veganism subset. Overall, these studies
highlight the complexity of the task and suggest
that improved fusion-based approaches may offer
performance gains.

2.3 Multimodal Content Detection in Bengali

In contrast to other languages, propaganda detec-
tion using multimodal content in Bengali remains
at a rudimentary stage. Existing multimodal stud-
ies using DL and transformer-based models have
mainly addressed fake news detection (FAR, 2025),
hate speech detection (Hossain et al., 2022), emo-
tion classification (Rahman et al., 2025; Das et al.,
2024), aggression detection (Hasan et al., 2025),
and commercial content detection (Shanto et al.,
2025). Multimodal content such as memes has also
been used to detect aggressiveness (Alam et al.,
2024b) and for sentiment analysis (Ahammad et al.,
2025). Work leveraging LLMs for multimodal
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classification is similarly limited. Hasan et al.
(2024) examined LLMs with zero- and few-shot
techniques for Bengali sentiment analysis and ob-
served inferior performance with GPT-4. Building
on this, Hossain et al. (2025) investigated VLMs,
LLMs, MLMs, and vision transformers for multi-
modal text classification, showing that integrating
pre-trained vision transformers for visual encod-
ing and MLMs for textual encoding through fusion
produced the best results.

Most existing studies in Bengali have primar-
ily focused on detecting fake news, sentiment, ag-
gression, and emotion, using mainly memes and
text-image pairs. However, the detection of pro-
paganda remains unexplored, and, to the best of
our knowledge, there is currently no publicly avail-
able multimodal dataset specifically designed for
propaganda detection, nor has a comprehensive
multimodal analysis been conducted in this context.
To address this gap, this study examines various
multimodal techniques for the task on a newly de-
veloped dataset.

3 Dataset Development: MemeGuard

Our research reveals that no dataset currently exists
for identifying multimodal propaganda in Bengali
memes. To fill this gap, we developed Meme-
Guard, a multimodal dataset of 3,745 samples.
This section describes the dataset’s development
process and key statistics.

3.1 Data Accumulation

The dataset was compiled by collecting Bengali
memes over a five-month period from two sources:
Facebook and a curated archive (Alam et al.,
2024b). Facebook, a lively hub for Bengali user-
created memes, provided dynamic content that
captured local humour and cultural nuances. The
archive offered structured collections that reflected
diverse styles, in which textual variations could al-
ter meaning. Keywords such as Bengali Memes,
Bengali Funny Memes, Propaganda Memes, Ben-
gali Celebrity Memes, Bengali Offensive Memes,
and Bengali Political Memes were used to search
groups and collect memes.

A total of 3,745 memes were collected, com-
prising 1,501 (40.1%) from Facebook and 2,244
(59.9%) from the curated archive (Fig. 1).

Only memes with Bengali captions were in-
cluded, while excluding the following memes: (i)
unimodal memes (text-only or image-only), (ii)

Figure 1: Distribution of data collection sources

memes containing unreadable text or very low qual-
ity image, and (iii) already existing memes. Af-
ter that, the text was manually extracted from the
browser using Google Lens, as Bengali lacks a
reliable OCR system. Only relevant content was
captured, excluding extraneous elements such as
group names or creator identifiers. Finally, the ex-
tracted texts from memes were passed to annotators
for manual labelling to ensure a rich dataset.

3.2 Dataset Annotation

The MemeGuard dataset is designed for binary
classification, categorizing memes into two distinct
categories: Non-Propagandistic (Non-Prop) and
Propagandistic (Prop). We follow the propaganda
techniques proposed by Dimitrov et al., 2021 to
define these categories in a simple, engaging, and
precise way.

• Non-Prop: These memes are playful and neu-
tral, designed to entertain without advancing
any agenda. They often use humor, everyday
scenarios, or light satire to foster connection
through shared amusement.

• Prop: These memes seek to influence opin-
ions or actions toward a specific goal. They
promote political, ideological, or social agen-
das, often using emotionally charged or mis-
leading content.

Guidelines for annotators are crucial for ensur-
ing high-quality datasets. To assist annotators, we
identified key characteristics as questions (see Ap-
pendix A), drawn from established propaganda
techniques (Dimitrov et al., 2021), which are criti-
cal for distinguishing their manipulative nature. A
team of five members conducted the manual an-
notation: four early-career NLP researchers (three
graduate students and one research assistant) and
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one senior NLP expert with 23 years of experience.
The early-career annotators had 1–2.5 years of NLP
experience, with 2 of them having prior annotation
experience. Their ages ranged from 24 to 26, while
the expert was 48.

A meme is considered propagandistic if it meets
one or more characteristics defined in Appendix A.
In the first stage, the three graduate annotators inde-
pendently label the memes. Majority voting is ap-
plied to their labels to create the initial dataset. The
RA annotator reviews this preliminary dataset. If
the RA finds inconsistencies in labeling, the cases
are discussed with the Expert Annotator to reach a
final decision. This process produces the finalized
dataset. We then calculated Cohen’s kappa coef-
ficient to measure inter-rater agreement (Cohen,
1960), with an average kappa value of 0.84. This
shows nearly perfect agreement on the kappa scale,
as shown in Table 8 (Appendix B), highlighting the
robustness and dependability of the annotations for
Bengali propagandistic meme detection.

3.3 Dataset Statistics

The MemeGuard dataset comprises 3,745 Bengali
memes, with 865 labeled as Prop and 2,880 la-
beled as Non-Prop. The text contains 1,881 unique
words, reflecting the linguistic diversity of Ben-
gali memes. To support model training and eval-
uation, the dataset was stratified into 70% (2,621
memes) for training, 15% (562 memes) for valida-
tion, and 15% (562 memes) for testing, ensuring
proportional representation of the 865 propagandis-
tic and 2,880 non-propagandistic memes in each
subset, as shown in Table 1. Specifically, the train-
ing set contains 605 propagandistic and 2,016 non-
propagandistic memes, while the validation and
testing sets each include 130 propagandistic and
432 non-propagandistic memes. Textually, memes
average around 14 words per sample, with sen-
tence lengths ranging from 2 to 66 words, and a
total vocabulary exceeding 11,000 unique words.
Visually, all images were resized to a uniform res-
olution of 224 × 224 pixels and stored in either
PNG or JPEG format, with an overall average size
of approximately 118 KB. This standardized and
stratified setup ensures consistency, class balance,
and reproducibility for robust model training and
evaluation.

Figure 2 presents the frequency distribution of
text lengths across the dataset, revealing that most
memes contain between 5 and 20 words.

Class Train Validation Test Total
Prop 605 130 130 865
Non-Prop 2016 432 432 2880
Total 2621 562 562 3745
TS 2621 562 562 3745
TW 36340 8216 7834 52390
TUW 9145 3444 3287 11308
Lmin 2 3 2 -
Lmax 55 66 47 -
Lavg. 13.93 14.73 13.96 -
IT 2621 562 562 3745
Iavg. (KB) 117.05 124.42 114.97 117.84
IR (px) 224 × 224
Iformat PNG or JPEG

Table 1: Distribution of data across train, validation, and
test sets. The symbols TS , TW , TUW denote the total
sentences, total words, and total unique words.

Figure 2: Frequency distribution of words per text

4 Methodology

A meme combines visual and textual elements, re-
quiring parallel processing of both. This work ex-
amines deep learning and transformer-based mod-
els to extract and integrate these features. Feature-
level fusion is then used to classify memes as pro-
pagandistic or non-propagandistic.

4.1 Data Preprocessing

Preprocessing standardizes inputs across modali-
ties, thereby optimizing both learning and inference
performance. Textual content preprocessing pre-
pares data for classification models. Raw text is
cleaned by removing stopwords, punctuation, and
other unnecessary characters, reducing noise and
improving feature extraction. The processed text is
converted into dense vectors using embeddings like
GloVe and FastText, or tokenized into IDs and at-
tention masks with the Hugging Face tokenizer for
transformer models such as BanglaBERT, MuRIL,
and XLM-R. Padding adds extra tokens for uniform
input lengths. Text normalization standardizes the
format to ensure compatibility with pretrained vo-
cabularies, especially for language-specific models
like BanglaBERT.
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For the visual modality, each image is resized
to 224 × 224 pixels with three colour channels
and converted to a tensor (a multidimensional ar-
ray) using PyTorch, enabling GPU acceleration and
batch processing. Normalization is performed us-
ing mean and standard deviation values from the
ImageNet dataset, ensuring compatibility with the
input requirements of standard image models such
as VGG16, ResNet50, Swin Transformer, and Vi-
sion Transformer (ViT).

4.2 Unimodal Baselines

• Text Modality: Propagandistic meme de-
tection explored various unimodal baselines
that leverage deep learning and transformer-
based architectures. For the text modality,
CNN, BiLSTM, and CNN-BiLSTM hybrids
were employed for binary classification, uti-
lizing 300-dimensional GloVe and FastText
embeddings. Training utilized the Adam op-
timizer, binary cross-entropy loss, and call-
backs such as EarlyStopping and ReduceL-
ROnPlateau. Transformer models included
BanglaBERT-1 (Sarker, 2021), BanglaBERT-
2 (Bhattacharjee et al., 2021), mBERT (Devlin
et al., 2019), MuRIL (Khanuja et al., 2021),
IndicBERT (Kakwani et al., 2020), Bangla-
Electra (NLP, 2024), and XLM-R (NLP,
2024). These pretrained Hugging Face mod-
els were fine-tuned on the developed corpus.
Appendix C lists the tuned hyperparameters
utilized for DL and transformer models for
text modality.

• Visual Modality: The visual modality
was addressed by sequentially applying
pretrained convolutional neural networks
(VGG16, VGG19, ResNet50, EfficientNet-
B0, EfficientNet-B3 (Tan and Le, 2019)) and
transformer-based models (ViT (Dosovitskiy
et al., 2020), Swin (Liu et al., 2021), BEiT
(Bao et al., 2021), DeiT (Touvron et al.,
2021), ConvNeXT (Liu et al., 2022), CLIP
(Radford et al., 2021)) for image feature ex-
traction, each with varied fine-tuning strate-
gies. Specifically, VGG19 (Simonyan and
Zisserman, 2014) was fine-tuned on features
[:15] using a custom classifier with linear lay-
ers, batch normalization, ReLU, and dropout.
VGG16 was tuned up to features [:20] with
fully connected layers, ReLU, and dropout.
EfficientNetB3 unfroze the last 30 layers and

employed global average pooling, batch nor-
malization, dropout, and dense layers (ReLU,
sigmoid). ResNet50 unfroze the previous 20
layers and used dropout and dense layers. Ef-
ficientNetB0 unfroze layers from 100 onward,
with global average pooling, dropout, dense
layers (ReLU), and sigmoid activation. For
transformer-based models, pretrained versions
were obtained from the Hugging Face collec-
tion and fine-tuned on the developed dataset.
All models were trained with binary cross-
entropy loss and class weights to address im-
balance. Appendix C presents the various
tuned hyperparameters used to create multiple
visual models.

4.3 Multimodal Baselines

This work explores 16 multimodal baselines gener-
ated by combining the top-performing four textual
(BanglaBERT-1, BanglaBERT-2, MuRIL, XLM-
R) and four visual models (CLIP, BEiT, ViT,
Swin), which merge their respective complemen-
tary strengths with various hyperparameters (Table
9 in Appendix C). The models were combined us-
ing feature-level fusion, where the [CLS] features
from the textual and visual models were fused be-
fore generating logits, enabling effective integra-
tion of both modalities and enhancing the overall
performance of the multimodal system.

4.3.1 Proposed Methodology

The proposed architecture for propagandistic meme
detection in Bengali integrates two pre-trained mod-
els: BanglaBERT-2 for processing textual data
and CLIP for analyzing image data. These mod-
els are combined using a late fusion approach,
as illustrated in Figure 3, to leverage information
from both modalities effectively. BanglaBERT-2
and CLIP models are fine-tuned on the developed
dataset with manually tuned hyperparameters; both
models are obtained from Hugging Face. To ensure
consistency across modalities, both models were
fine-tuned with carefully selected configurations
derived through extensive manual experimentation.
Let Vlogits ∈ RC and Tlogits ∈ RC denote the class
logits produced by the visual and textual models,
respectively, where C is the number of classes. The
fusion procedure can be described as follows.

To calibrate the sharpness of each distribution,
we apply temperature scaling with a learnable pa-
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Figure 3: Architecture of the proposed multimodal ap-
proach for propaganda detection from memes.

rameter τ > 0, with an initial value of 1.0 (Eq. 1).

Vscaled =
Vlogits

τ
, Tscaled =

Tlogits

τ
. (1)

To adaptively control the relative contribution of
each modality, we introduce learnable parameters
w1, w2 ∈ R and compute modality weights via a
softmax operation instead of giving equal weight
as illustrated in Eq. 2.

[α1, α2] = softmax([w1, w2]),

α1 + α2 = 1, αi ≥ 0.
(2)

The fused logits are obtained as a convex combi-
nation of the scaled logits (Eq. 3.

Final_Logits = α1 · Vscaled + α2 · Tscaled (3)

Finally, the predicted label is chosen as the class
with the largest value in the fused logits, as shown
in Eq. 4.

ŷ = arg max
c∈{1,...,C}

Final_Logits[c] (4)

5 Experiments

The proposed framework was implemented and
tested on a Kaggle GPU instance with a Tesla P100
GPU, 30 GB of RAM, and a Linux operating sys-
tem supporting CUDA 11.8 and cuDNN. Python
was used for development, utilizing PyTorch
2.1.0 and Hugging Face Transformers 4.35.2
for deep learning, as well as Pandas 2.0.3 and
NumPy 1.24.3 for data processing. Experiments
were run in Kaggle’s Jupyter Notebook environ-
ment. Model performance was assessed using

macro-F1, weighted-F1, and geometric mean (G-
mean). All code and data are publicly available at
https://github.com/MohiuddinPrantiq/MemeGuard-
MultimodalPropagandaDetection.

5.1 Results and Analysis

Although the primary criterion for selecting the
top-performing model was the macro F1-score (M-
F1), which is suitable for imbalanced datasets, ad-
ditional metrics, such as the weighted F1 score
(W-F1) and G-Mean (G), were used for a compre-
hensive performance comparison.

5.1.1 Performance of Unimodal Baselines
Table 2 presents the performance of textual base-
lines. CNN+BiLSTM with FastText embeddings
achieved superior performance (79.36&) over other
DL models. Notably, Bangla BERT-1 achieved the
highest M-F1 score of 80.34%, outperforming all
other textual models tested in this study.

Model M-F1 W-F1 G
CNN+GloVe 0.7069 0.7823 0.7212
CNN+ FastText 0.7069 0.7823 0.7212
BiLSTM+GloVe 0.6900 0.7600 0.7246
BiLSTM+FastText 0.7800 0.8400 0.7960
CNN+BiLSTN+ GloVe 0.7029 0.7717 0.7397
CNN+BiLSTN+FastText 0.7936 0.8491 0.8080
MuRIL 0.8011 0.8563 0.8070
BanglaBERT-2 0.7970 0.8549 0.7939
IndicBERT 0.7479 0.8159 0.7560
m-BERT 0.7879 0.8516 0.7666
XLM-R 0.8002 0.8550 0.8091
Bangla-Electra 0.7111 0.7793 0.7452
BanglaBERT-1 0.8034 0.8624 0.7826

Table 2: Performance of textual models.

Table 3 illustrates the performance of visual base-
lines. Among DL models, VGG19 and ResNet50
demonstrated strong performance, with VGG19
achieving the higher M-F1 score of 76.27%. How-
ever, CLIP achieved the highest macro F1-scores
of 78.94%, demonstrating the superior represen-
tational capacity of transformer architectures in
visual feature extraction for propagandistic meme
detection.

5.1.2 Performance of Multimodal Models
Multimodal analysis, which utilizes both tex-
tual and visual modalities, enhanced performance
across a feature-level fusion strategy, enabling ef-
fective integration and improving the overall per-
formance of the multimodal system. As shown
in Table 4, among the top four performing mod-
els per modality, BanglaBERT-2+CLIP achieved
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Model M-F1 W-F1 G
VGG16 0.5734 0.6219 0.6562
VGG19 0.7627 0.8438 0.6939
ResNet50 0.7500 0.8200 0.7386
EfficientNet-B0 0.4600 0.6800 0.1723
EfficientNet-B3 0.5500 0.7000 0.4473
ViT 0.7749 0.8400 0.7491
BEiT 0.7861 0.8534 0.7460
CLIP 0.7894 0.8587 0.7302
ConvNeXT 0.7384 0.8267 0.6642
DeiT 0.7643 0.8400 0.7367
Swin 0.7649 0.8400 0.7190

Table 3: Performance of visual models.

the highest M-F1 score of 82.83%. BanglaBERT-
1+CLIP followed closely with an M-F1 score of
82.62%. Notably, CLIP consistently contributed
to top-performing results across text models, high-
lighting its strong visual representation capabilities.
The MuRIL – SWIN pair also demonstrated com-
petitive performance, with a macro F1-score of
80.99%.

Text Image M-F1 W-F1 G

BanglaBERT-1

CLIP 0.8262 0.8785 0.8056
BEiT 0.7970 0.8584 0.7733
ViT 0.7837 0.8549 0.7243
Swin 0.7979 0.8636 0.7444

MuRIL

CLIP 0.7673 0.8336 0.7614
BEiT 0.7586 0.8339 0.7201
ViT 0.7510 0.8277 0.7165
Swin 0.8099 0.8630 0.8144

XLM-R

CLIP 0.8097 0.8664 0.7917
BEiT 0.8016 0.8634 0.7661
ViT 0.6728 0.7557 0.6848
Swin 0.8014 0.8658 0.7494

BanglaBERT-2

CLIP 0.8283 0.8802 0.8066
BEiT 0.8189 0.8741 0.7930
ViT 0.8048 0.8655 0.7709
Swin 0.7982 0.8588 0.7771

Table 4: Performance of multimodal combinations.

Following thorough hyperparameter tuning, the
proposed model reached an M-F1 score of 85.36%.
This represents a 5.02% improvement over the best
text model (BanglaBERT-1, 80.34%), a 6.42% gain
over the best visual model (CLIP, 78.94%), and a
7.02% increase compared to the best multimodal
baseline (CLIP, 78.34%).

5.1.3 Impact of pre-trained multimodal
baselines

Several prebuilt multimodal models were evaluated,
including BLIP-2, CLIP, M-CLIP, and VisualBERT.
Table 5 presents their performance metrics. How-
ever, these prebuilt solutions consistently underper-
formed relative to the custom fusion-based multi-
modal systems. Notably, CLIP achieved the high-

est M-F1 score among them at 78.34%, which re-
mains significantly lower than that of the proposed
method (BanglaBERT-2 + CLIP). This marked dif-
ference highlights the clear superiority of carefully
designed fusion strategies over generic, end-to-end
pre-trained multimodal models for classifying pro-
pagandistic memes in Bengali.

Model M-F1 W-F1 G
BLIP-2 0.7300 0.8200 0.6425
CLIP 0.7834 0.8491 0.7577
M-CLIP 0.7430 0.8032 0.7838
VisualBERT 0.5755 0.6636 0.6034

Table 5: Performance of pre-trained multimodal models.

5.1.4 Impact of hyperparameters’ tuning on
performance

All models were trained using 70% of the dataset,
validated on 15%, and tested on the remaining 15%.
We conducted extensive hyperparameter tuning
on the top-performing model (e.g., BanglaBERT-
2+CLIP) to further enhance its performance. This
process aimed to identify the optimal configura-
tion to improve classification results and robust-
ness. Table 6 provides a detailed overview of the
selected hyperparameters and their impact on per-
formance metrics. After tuning, with data split
(80-10-10), late fusion, learning rate (5e-5), batch
size (4), weight decay (0.1), and training for 20
epochs with gamma=2, the BanglaBERT-2+CLIP
model achieved an M-F1 of 85.36%, about 2.53%
higher than the initial configuration (82.83%), with
corresponding improvements in W-F1 (89.86%)
and G-Mean (82.97%), demonstrating that careful
hyperparameter optimization significantly boosts
performance.

Hyperpar-
ameter

Optimal M-F1 W-F1 G

Data Split {60,
70, 80}

80-10-10 0.8324 0.8777 0.8523

Fusion Type
{Feature,
Late}

Late 0.8356 0.8843 0.8257

LR {(1,2,5) e-
5, 5e-4}

5e-5 0.8406 0.8887 0.8236

Batch Size {4,
8, 16}

4 0.8536 0.8986 0.8297

WD {0.01,
0.1}

0.1 0.8536 0.8986 0.8297

Gamma &
Epochs

2, 20 0.8536 0.8986 0.8297

Table 6: Performance across different hyperparameter
configurations for BanglaBERT-2+CLIP model.
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5.1.5 Comparison with existing techniques

To evaluate the effectiveness of the proposed model,
we benchmarked its performance against several
existing multimodal approaches (Zaytoon et al.,
2024; Hasanain et al., 2024b; Qu et al., 2022)
on the dataset we developed. Table 7 shows that
the proposed method achieved the highest W-F1
score of 89.86%, surpassing all existing techniques
and demonstrating superior capability in propa-
gandistic meme detection across modalities. The
proposed method outperforms the second-best ap-
proach (Bloomz-1b1+ ResNe101) by achieving an
absolute improvement of 3.05% in M-F1 (from
85.36% to 88.41%) and 2.55% in W-F1 (from
89.86% to 92.41%).

Model M -F1 W-F1 G
Bloomz-1b1 + ResNet101
(Zaytoon et al., 2024)

0.8231 0.8731 0.8316

ResNet + BERT to SVM
(Hasanain et al., 2024b)

0.7293 0.8270 0.6243

VisualBERT-COCO (Qu
et al., 2022)

0.6233 0.7016 0.6648

CLIP (Li et al., 2024) 0.7903 0.8509 0.7854
Proposed (BanglaBERT-
2+CLIP)

0.8536 0.8986 0.8297

Table 7: Benchmarking of multimodal models on the
test set.

5.1.6 Ablation Study

To assess the contributions of image-text modal-
ities and fusion techniques, we perform an abla-
tion study utilizing the macro F1 score. Text and
image modalities perform competitively indepen-
dently, with BanglaBERT-1 slightly outperform-
ing CLIP (80.34% vs. 78.94%). Combining both
using feature-level fusion—where representations
from each modality are merged before the final
classification—increases performance to 82.83%,
demonstrating the complementary nature of the
two approaches. The proposed late-fusion method
integrates BanglaBERT-2 and CLIP by maintain-
ing separate modality-specific representations and
combining them only at the decision level, with
improved hyperparameter tuning, which achieves
the best macro F1 score of 85.36%. This represents
gains of +2.53 points over intermediate fusion and
+5.02 / +6.42 points compared to the text-only and
image-only baselines, respectively, demonstrating
that preserving modality-specific representations
and integrating them later yields superior results
for multimodal propagandistic meme detection.

5.2 Error Analysis

To gain an in-depth understanding of the proposed
model’s performance, a thorough error analysis is
conducted using both quantitative and qualitative
methods. The following parts present a detailed
error analysis of the BanglaBERT-2+CLIP model.

5.2.1 Quantitative Error Analysis
The confusion matrix (Figure 4) confirms
strong classification performance (337/374 correct;
90.11% accuracy). For the positive class, the error
rate is 27.9% with 24 misclassified samples; for
the negative class, the error rate is 4.5% with 13
misclassified samples, while the per-class weighted
F1-scores are 0.7214 for Non-prop and 0.1771 for
Prop, which sum to the overall weighted average
of 0.8986. The lower weighted F1-score for propa-
gandistic (0.1771) compared to non-propagandistic
(0.7214) is primarily due to the severe class imbal-
ance in the dataset, where class 1 accounts for only
23.1% (86 samples) of the total data. In compari-
son, class 0 dominates with 76.9% (288 samples).
There are low false positives (4.5%) but higher
false negatives (27.9%), indicating high precision
yet room for improvement in recall. Overall, the
results highlight the potential of multimodal trans-
former models for propagandistic content detection
in multilingual contexts.

Figure 4: Confusion matrix of the proposed model.

5.3 Qualitative Error Analysis

Figure 5 shows representative examples of cor-
rect and incorrect predictions generated by the pro-
posed method (BanglaBERT-2+CLIP) compared
with BanglaBERT-2 and CLIP. In Figure 5a, all
three models correctly labelled the meme as non-
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propagandistic, indicating strong agreement be-
tween visual and textual modalities when both cues
align. In Figure 5b, the textual model misclassi-
fied the humorous content as propagandistic, and
the multimodal model reflected this textual bias,
whereas the visual model relied on image cues and
correctly identified it as non-propagandistic, high-
lighting each model’s dependency on its respec-
tive modality. Figure 5c shows a challenging case
where the textual model detected propagandistic
content, but the visual and multimodal models did
not, due to reliance on visual cues that missed com-
munal or cultural propaganda. The ground truth
confirmed the propagandistic label, underscoring
that models that prioritize visual context may over-
look textual signals. Finally, Figure 5d shows that
all modalities converged on the correct propagan-
distic classification, demonstrating that explicit tex-
tual propaganda, when supported visually, enables
consistent predictions based on combined cues.

(a) Actual: Non-prop
√

Textual: Non-prop
√

Visual: Non-prop
√

Multimodal: Non-prop
√

(b) Actual: Non-prop
Textual: Prop X
Visual: Non-prop

√
Multimodal: Prop X

(c) Actual: Prop
Textual: Prop

√
Visual: Non-prop X
Multimodal: Non-prop X

(d) Actual: Prop
√

Textual: Prop
√

Visual: Prop
√

Multimodal: Prop
√

Figure 5: Examples of correct and incorrect predictions
by the proposed model.

The four meme samples illustrate how each
model’s reliance on either textual, visual, or mul-
timodal cues affects prediction accuracy. For in-
stance, when both text and image suggest harmless

humour, predictions are generally reliable across
all models. However, challenges arise when pro-
pagandistic messages are covertly embedded in
images that textual models may miss, or when cul-
turally sensitive language in text prompts false pos-
itives from text-dependent models. These modality
dependencies complicate the distinction between
propaganda and non-propaganda, especially when
nuanced religious or political content is present.
Such subtleties can confuse models, leading to er-
rors when one modality dominates interpretation.
This dependency limits the models’ ability to gener-
alize across diverse meme formats, often leading to
misclassification in emotionally or culturally com-
plex instances and underscoring the importance of
integrating and balancing multiple modalities for
comprehensive understanding.

6 Conclusion

This work presents MemeGuard, a new dataset for
detecting propaganda in Bengali memes. Using this
dataset, forty-five unimodal and multimodal mod-
els are systematically evaluated for this task. Eval-
uation demonstrates that the BanglaBERT-2+CLIP
model decisively surpasses all unimodal and multi-
modal baselines after fine-tuning on MemeGuard,
achieving the top macro F1 score (85.36%) and
weighted F1 (89.86%). These results highlight the
strength of the proposed multimodal fusion in iden-
tifying propagandistic content. Future research will
address current model limitations by expanding
and diversifying the dataset, enhancing code-mixed
data handling, exploring cutting-edge multimodal
architectures such as LLMs and VLMs, refining
fine-grained propaganda detection, and implement-
ing automated hyperparameter optimization, while
also leveraging a mix of our limited labeled corpus
(3,745 samples) and additional unlabeled memes
to enable semi-supervised learning, allowing the
model to exploit abundant unlabeled data for richer
representation learning—an approach particularly
valuable for low-resource languages like Bengali.
Beyond the well-established late-fusion strategy
that yielded our best performance, future direc-
tions include investigating alternative fusion mech-
anisms, such as cross-modal attention, early or hi-
erarchical fusion, and adaptive or gated fusion, as
well as modality-specific architectural innovations,
such as improved vision encoders, code-mixed lan-
guage models, and joint embedding frameworks
for more substantial multimodal alignment.
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Limitations

Although the proposed method performs well at
detecting propaganda in memes, several significant
limitations remain unaddressed.

• A limited dataset size and narrow data sources
may reduce generalizability.

• Class imbalance, with only 23.1% of samples
labelled as propagandistic, may introduce bias
in model training.

• Manual hyperparameter tuning is time-
intensive and may not produce optimal results.

• Focusing solely on Bengali memes limits the
method’s applicability to other languages.
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A Annotation Guidelines

The following questions, tied to specific propa-
ganda characteristics, guide the classification pro-
cess, where memes that fall under one or more
of these characteristics are considered propagan-
distic, and those that do not are treated as non-
propagandistic:

• Intent to Influence or Manipulate: (i) Does
the meme push a specific political, ideological,
or social agenda? (ii) Does it encourage the
viewer to act (support a cause, oppose a group,
or adopt a belief)?

• Emotional Appeal: (i) Does the meme evoke
strong emotions like fear, anger, pride, or sym-
pathy? (ii) Does it use fear, exaggeration, or
threats to influence opinions or actions?

• Simplification of Complex Issues: Does the
meme reduce a complex issue to overly simple
terms?

• Polarization and Division: Does the meme
create an “us versus them” narrative?

• Repetition and Catchphrases: Does the
meme repeat messages or use catchy slogans
that stick in the audience’s mind?

• Misleading Information: Does the meme
include misinformation or disinformation?

• Smear Tactics: Does the content use negative
claims to undermine the reputation of an in-
dividual or group without providing credible
evidence?

• Visual Symbolism and Transfer: Does the
meme use images or symbols (like national
flags, religious icons, or culturally significant
visuals) to evoke specific associations or emo-
tions?

B Cohen’s Kappa Score

The annotation quality for the MemeGuard dataset
was assessed using Cohen’s kappa coefficient
among three undergraduate annotators, as shown
in Table 8. Pairwise kappa scores were 0.85 (An-
notator 1 & 2), 0.90 (Annotator 1 & 3), and 0.77
(Annotator 2 & 3), indicating significant to almost
perfect agreement. The average kappa score of 0.84
shows the high consistency and reliability of the an-
notations, highlighting the robustness of the dataset
for detecting Bengali propagandistic memes.

Pair Kappa Score
P-1 0.85
P-2 0.90
P-3 0.77
Average 0.84

Table 8: Pairwise Cohen’s kappa score

C Hyperparameters

Table 9 provides a detailed overview of the hyper-
parameters chosen for training both unimodal and
multimodal baselines. All models were trained us-
ing these values, which we examined across every
model.

Hyperparameter Search Space
Batch Size 4, 8, 16
Epochs 10, 15, 20
Optimizer Adam
Weight Decay 0.01, 0.1
Learning Rate 5e-4, (1, 2, 5) e-5

Table 9: Hyperparameters for all models
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Abstract

This paper investigates how the specificity of
natural language prompts influences zero-shot
classification performance in modern vision
language models (VLMs) under severe data
scarcity. Using a curated 285 image subset of
MS COCO containing three everyday postures
(sitting, standing, and walking/running), we
evaluate OpenCLIP, MetaCLIP 2, and SigLIP
alongside unimodal and pose-based baselines.
We introduce a three tier prompt design, mini-
mal labels, action cues, and compact geometric
descriptions and systematically vary only the
linguistic detail. Our results reveal a counter-
intuitive trend where simpler prompts consis-
tently outperform more detailed ones, a phe-
nomenon we term prompt overfitting. Grad-
CAM attribution further shows that prompt
specificity shifts attention between contextual
and pose-relevant regions, explaining the model
dependent behaviour. The study provides a con-
trolled analysis of prompt granularity in low
resource image based posture recognition, high-
lights the need for careful prompt design when
labels are scarce.

1 Introduction

Label scarcity is a central barrier for practical hu-
man action recognition from still images (Wu et al.,
2022). Many deployments cannot acquire balanced
annotations or run task specific training. Vision
and language encoders mitigate this limitation by
learning a shared embedding space in which text
can serve as a label at inference time (Radford et al.,
2021). This paper studies whether careful wording
of those text labels improves zero shot classifica-
tion under data scarcity.

The task focuses on three everyday postures in
still images, namely sitting, standing, and walk-
ing or running, using a small subset derived from
COCO (Lin et al., 2014) with 230 images. Image
content, preprocessing, and scoring are held fixed,

and language acts as the only supervision at infer-
ence. Each image is embedded once at the native
input size of the model and is scored by cosine
similarity against one prompt per class. Prompt
specificity is the sole experimental factor and fol-
lows a three tier design. Tier one uses a minimal
label template. Tier two adds a short action cue.
Tier three adds compact pose geometry that spec-
ifies body configuration. Prompts exclude scene,
identity, and clothing terms so that differences arise
only from pose description.

Evaluation covers multimodal encoders that
align images and text, namely OpenCLIP, Meta-
CLIP and SigLIP. Vision only baselines include
DINOv3 and a standard Vision Transformer paired
with frozen sentence embeddings to form a heuris-
tic zero shot classifier. A pose based baseline uses
YOLOv11 Pose for key-point estimation together
with a simple geometric decision rule. Results are
reported as accuracy and macro F1 for each tier
and each model, and qualitative analysis with gra-
dient based visualisations assesses whether greater
prompt specificity shifts attention toward pose rele-
vant regions. The study provides an empirical pro-
tocol for zero shot recognition under data scarcity
and a controlled comparison of prompt wording
across modern encoders and non linguistic base-
lines.

2 Related Works

2.1 Vision–Language Models for Zero-Shot
Classification

At the core of modern zero-shot classification is the
contrastive language–image pre-training paradigm
introduced by CLIP, which aligns visual and textual
representations in a shared embedding space us-
ing large collections of image–text pairs (Radford
et al., 2021; Jia et al., 2021). The objective draws
paired images and texts closer while separating mis-
matched pairs, thereby encoding vision–language
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correspondences (Zhang et al., 2023). Zero-shot
classification then becomes a nearest-neighbour
search in this shared space: given an input image
and a set of class descriptions, the model computes
cosine similarity between image features and the
text embeddings of prompts such as “a photo of
a [class]”, predicting the class with the highest
similarity (Ghiasvand et al., 2025b,a).

OpenCLIP demonstrates competitive results
across more than thirty benchmarks spanning OCR,
scene recognition, and fine-grained object cate-
gorisation, often approaching supervised baselines
without task-specific training (Radford et al., 2021).
The contrastive formulation has since been adapted
for downstream tasks including detection, segmen-
tation, video action recognition, and depth estima-
tion (Xu et al., 2023; Zhou et al., 2022; Xu et al.,
2022). More recent models such as SigLIP revisit
the pre-training loss, replacing the softmax con-
trastive objective with independent sigmoid scor-
ing (Zhai et al., 2023), while MetaCLIP 2 improves
performance by scaling and curating training data
(Chuang et al., 2025). Dual-encoder VLMs remain
dominant due to their scalability, robustness, and
task flexibility (Volkov et al., 2025; Zhang et al.,
2023).

2.2 Low-Resource & Low-Compute Image
Understanding

Balancing performance and computational effi-
ciency has motivated training-free or parameter-
efficient approaches for resource-constrained en-
vironments (Zhang et al., 2024). These methods
leverage pre-trained representations to extract more
information from test samples and class names
without parameter updates a valuable property
when labelled data, compute, or both are limited.
Parameter-efficient adaptation, including prompt
tuning and related techniques, offers a middle
ground by updating only a small subset of param-
eters or learned tokens while keeping backbone
weights frozen (Mistretta et al., 2024; Lester et al.,
2021). Training-free few-shot methods such as TIP-
Adapter further exploit cached support embeddings
to merge zero-shot textual knowledge with visual
evidence (Esbri et al., 2024).

Resource constraints also arise from domain
shift and model scale. Direct zero-shot deployment
of large VLMs can be hindered by distributional
mismatch, particularly in specialised settings such
as medical imaging (Wang et al., 2025; Liu et al.,
2023). Video understanding presents additional

challenges, as spatiotemporal modeling increases
computation demands (Bosetti et al., 2024; Shao
et al., 2020). Collectively, these findings highlight
the importance of methods that maximise generali-
sation under minimal supervision. VLMs function
effectively as “data multipliers,” transferring broad,
open-world knowledge into low-resource classifi-
cation settings (Zhang et al., 2024; Volkov et al.,
2025). Our study takes this perspective by com-
paring multimodal and vision-only models under
severe data scarcity.

2.3 Prompt Semantics, Granularity, and
Posture Cues

Early work on domain-specific zero-shot recogni-
tion used manually specified semantic attributes
to represent actions or activities, enabling recogni-
tion of unseen classes through structured linguis-
tic or conceptual descriptions (Bosetti et al., 2024;
Zellers and Choi, 2017). Later approaches replaced
hand-built attributes with distributional word em-
beddings, framing zero-shot recognition as align-
ment between visual features and latent semantic
spaces. These ideas extend naturally to video set-
tings, where language acts as the primary mecha-
nism for generalisation (Bosetti et al., 2024; Shao
et al., 2020).

Prompt engineering has since become a central
research focus, especially as models exhibit vary-
ing sensitivity to how class concepts are phrased.
Recent studies show that prompt wording measur-
ably affects zero-shot action recognition; prompts
generated by large language models frequently out-
perform raw label prompts (Ali et al., 2024). Meth-
ods such as CuPL automate descriptive prompt con-
struction and demonstrate consistent improvements
on benchmarks like ImageNet (Cai et al., 2025;
Pratt et al., 2022). However, Xu et al. highlight that
increasing linguistic specificity does not univer-
sally improve model performance and may instead
introduce distributional mismatches between text
and visual cues (Xu et al., 2023).

This motivates the need to understand how mul-
timodal encoders respond to differing levels of se-
mantic granularity, especially for fine-grained dis-
tinctions such as human postures. Our study builds
directly on this line of research: rather than generat-
ing long-form descriptions, we systematically ma-
nipulate prompt specificity minimal labels, action
cues, and compact geometric wording to examine
how VLMs ground pose semantics under extreme
data scarcity. This controlled setup allows us to

2
49



identify a counterintuitive phenomenon we term
prompt overfitting, where excessive detail harms
performance for stronger models.

3 Data and Methods

3.1 Dataset

We evaluate on a curated 285–image subset of
MS COCO Lin et al. (2014), a large–scale bench-
mark of everyday scenes with dense instance an-
notations. From the 2014 releases, images con-
taining at least one visible person with sufficient
visual evidence to judge posture were sampled, and
a single action label was assigned per image by
manual inspection. The subset is balanced across
three classes: sitting (n=95), standing (n=92),
and walking or running (n=98). Figure 1 shows
randomly selected examples for each class and il-
lustrates variation in viewpoint, background, and
occlusion. Exploratory analysis of raw image sizes
showed a concentration around 640×480 pixels,
which supports a uniform resize to 224×224 for all
models. Aspect–ratio distributions did not differ
across classes, and visual checks confirmed negli-
gible class–specific distortion after resizing.

Figure 1: Random samples from the curated MS COCO
subset for sitting, standing, and walking or running.

3.2 Models and Experimental Approach

Our evaluation is structured around three distinct
representation paradigms. In each case, the pre-
trained model serves as a feature extractor, with a
lightweight classifier trained on the resulting em-
beddings.

3.2.1 Unimodal Vision Models
Vision Transformer (ViT) A pre-
trained ViT (Sreekanth, 2024) model
(vit-base-patch16-224) was fine-tuned on
the dataset. It was evaluated on both a binary task
(sitting vs. standing) and the full three-class task to
assess its generalization capability.

DinoV3 A state-of-the-art vision model pre-
trained using self-supervised learning on images

alone, allowing us to assess the efficacy of
purely visual, non-linguistic representation learn-
ing (Siméoni et al., 2025).

3.2.2 Multimodal Vision-Language Models

OpenCLIP We employed OpenAI (Radford
et al., 2021)’s CLIP pre-trained vision encoder
openai/clip-vit-base-patch32 model, lever-
aging its extensive image-text pre-training to gen-
erate semantically rich embeddings.

Meta CLIP 2 An evolution of CLIP, pre-trained
on a more meticulously curated dataset to enhance
the quality and robustness of its visual-semantic
representations (?).

SigLip A VLM employing a sigmoid-based loss
function during pre-training, offering an alternative
to the contrastive objective of CLIP (?).

3.2.3 Pose-Centric Structural Model

YOLOv11x-pose This model implements a two-
stage process. First, the YOLOv11x pose (Khanam
and Hussain, 2024) architecture is applied to each
image to extract a set of 2D keypoints that repre-
sents the subject’s skeleton. Second, geometric
features, such as the angles between the left and
right knee and hip joints, are calculated from these
key points. A simple classifier is then trained on
these angular features to determine the final action
class.

3.3 Prompt tiering for zero-shot classification

We vary only the specificity of the text prompt in
order to test how wording affects zero-shot posture
recognition with scarce data. Tier 1 uses the class
label in a minimal template such as “a photo of
a person [class]”, which reflects common zero-
shot practice. Tier 2 adds a brief action cue that
clarifies the target category, for example “a person
seated on a chair”, “a person standing still and up-
right”, or “a person mid-stride with one foot off the
ground”. Tier 3 replaces action words with short
anatomical or pose constraints, for example “hips
and knees bent at right angles” for sitting or “legs
straight and torso vertical” for standing. Across
tiers we keep prompts scene free and we avoid
background, clothing, and identity terms so that
only pose information differs. For each tier we cre-
ate one prompt per class, compute unit-normalized
text embeddings once, embed each image once at
the model’s native resolution, and score classes by
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cosine similarity. We report accuracy and macro-
F1 per tier on the same images and preprocess-
ing settings without any model fine-tuning so that
observed differences can be attributed to prompt
content rather than changes in data or optimization.

3.4 Experimental Approach

All experiments were conducted with a focus on
reproducibility and were run on Google Colab on
a single NVIDIA T4 GPU with 16GB of memory.
The dataset was partitioned on a fixed stratified
80% training, 10% validation, and 10% test split
for all experiments. A global random seed was
established to ensure that all models were trained
and evaluated on the exact same data partitions.

The task was defined in two distinct classifica-
tion scenarios to assess the performance of the
model at varying levels of difficulty: (1) A sim-
plified binary task focusing on two more visually
distinct classes: sitting vs. walking/running. (2)
Three-class task encompassing all labels: sitting,
standing, and walking/running; To account for
stochasticity in the training process, each model
was trained and evaluated over five independent
runs with different seeds. We used an early stop-
ping mechanism with patience of 5 epochs, moni-
toring the validation loss to prevent over-fitting.

4 Results

The empirical evaluation is presented in two parts.
(1) A comparative analysis of different model ar-
chitectures under a standard training and evaluation
paradigm to establish baseline performance. (2) A
zero-shot experiment investigating how the speci-
ficity of text prompts affects the performance of
Vision-Language Models.

4.1 Comparative Analysis of Model
Architectures

A comparative evaluation of models from three
different paradigms (Unimodal, VLM, and Pose-
Centric) was conducted across both binary and
multi-class classification tasks as the first stage of
the evaluation.

4.1.1 Performance on Binary Classification
To investigate how model performance is affected
by task complexity, the models were evaluated
on a binary classification task (sitting vs. walk-
ing/running). The results, presented in Table 1,
show a general performance uplift across most

Figure 2: Mean test accuracy on the primary three-class
HAR task. Models with semantic (VLM) or structural
(Pose) priors demonstrate a clear performance advan-
tage.

models, yet the relative ranking remains largely
consistent.

MetaCLIP 2 performed the best with an accu-
racy of 92.8%. Notably, ViT performed well in this
less ambiguous setting, achieving 90.0% accuracy,
nearly matching the top VLM. This suggests that
when classes are more visually distinct, a powerful
unimodal architecture can be highly effective. The
original OpenCLIP model also performed strongly
at 88.1%. However, DinoV3 and SigLip surpris-
ingly continued to lag significantly, with accuracies
of 57.5% and 56.5%, respectively.

4.1.2 Performance on Multi-Class
Classification

The three-class action recognition task represents
the core challenge of this study, requiring models
to distinguish between visually similar and ambigu-
ous postures from a single static frame. As detailed
in Figure 2, the performance of the evaluated mod-
els diverged significantly, clearly separating them
into distinct tiers.

The models endowed with strong priors formed
the top tier. The Vision-Language Model Meta-
CLIP 2 achieved the highest accuracy at 74.0%.
Following closely was the YOLOv11x-pose model,
which, by leveraging a structural representation of
the human body, secured an accuracy of 71.0%.
The original OpenCLIP model also delivered a ro-
bust performance of 67.0%.

A substantial performance gap exists between
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these models and the unimodal models that learn
from pixels alone. The standard Vision Trans-
former (ViT) achieved a modest accuracy of 57.2%.
The purely self-supervised DinoV3 and the VLM
SigLip both struggled significantly, each attaining
only 40.7% accuracy, a result only marginally bet-
ter than random chance.

Model B. Acc. M. Acc. Prec. Rec. F1
MetaCLIP 2 0.92 0.74 0.74 0.74 0.74
ViT 0.90 0.52 0.59 0.57 0.57
OpenCLIP 0.88 0.67 0.68 0.67 0.66
YOLOv11x-pose — 0.71 0.73 0.71 0.71
DinoV3 0.57 0.40 0.41 0.41 0.40
SigLip 0.56 0.40 0.28 0.41 0.33

Table 1: Performance comparison of vision models,
reporting (B. Acc.) Binary Accuracy, (M. Acc.) Multi-
class Accuracy, (Prec.) Macro Precision, (Rec.) Macro
Recall, and (F1) Macro F1 Score.

4.1.3 Analysis of Class-Specific Metrics
To gain a more nuanced understanding, we ana-
lyzed the macro-averaged Precision, Recall, and
F1-Score (Table 1). These metrics reinforce the
hierarchy observed in accuracy. MetaCLIP 2 and
YOLOv11x-pose demonstrated a strong balance
between precision and recall, resulting in high F1-
Scores of 0.74 and 0.71, respectively, indicating
reliable classification across all three categories. In
contrast, lower-performing models exhibited imbal-
ances. For instance, SigLip2 had a recall of 0.41
but a very low precision of 0.28, suggesting it gen-
erated a large number of false positive predictions
in its attempt to classify instances from all classes.

4.2 Prompt-Specific Zero-Shot Performance
In our second set of experiments, we investigated
how prompt specificity affects the zero-shot perfor-
mance of VLMs. The results, detailed in Table 2,
show that the relationship between prompt detail
and model performance is not linear and is highly
model-dependent.

4.2.1 Performance Trends for High
Performing Models

The primary trend observed for the leading Vision-
Language Models is a clear inverse relationship
between prompt specificity and classification per-
formance. As represented in Table 2 both Meta-
CLIP 2 and OpenCLIP, the simplest Tier 1 prompts
consistently achieved the highest accuracy and F1
scores. The introduction of more descriptive fea-
tures in Tier 2 or anatomical cues in Tier 3 resulted

in a significant degradation of performance. This
effect was particularly pronounced for MetaCLIP
2, where the multi-class accuracy fell sharply from
68.8% with a Tier 1 prompt to 55.1% with a Tier
2 prompt. Similarly, OpenCLIP’s multi-class ac-
curacy saw a substantial decrease from a high of
71.2% (Tier 1) to 52.6% (Tier 2). This consistent
impact suggests a phenomenon of “prompt overfit-
ting” where excessive detail may unduly constrain
the models and hinder their ability to generalize.

4.2.2 Model-Dependent Responses to Prompt
Granularity

The Tier 1 performance trend was not universal,
highlighting that the optimal prompt strategy is
highly model dependent. The lower-performing
SigLip model exhibited a contrasting response to
the increase in prompt detail. While its overall ac-
curacy remained consistently low, its ability to clas-
sify the ambiguous walking_running class was
significantly boosted by the specific, “body cue-
based” Tier 3 prompts. This was most evident in
the binary task, where the F1 score for this specific
class jumped from 0.364 with a basic Tier 1 prompt
to 0.566 with the detailed Tier 3 prompt.

5 Discussion & Conclusion

5.1 Prompt Specificity as Supervision at
Inference

Prompt wording functions as an explicit prior on
the classifier decision in a zero-shot setting. Mini-
mal, noun-centric prompts align with the distribu-
tions seen during pre-training of image–text en-
coders, where concept names are frequent and
broadly grounded. This alignment explains the
competitiveness of label-only prompts in closed
sets. In contrast, adding brief action cues can intro-
duce a linguistic–visual mismatch for still images,
since verbs such as “walking” or “standing still”
denote dynamics or intent rather than stable ap-
pearance. The resulting text embeddings are drawn
toward contexts that are weakly supported by a sin-
gle frame, which reduces similarity margins and
increases overlap between neighbouring classes.

Geometric phrasing exerts a different influence.
Short anatomical constraints specify local, view-
stable relations, for example relative angles at the
hip and knee or verticality of the torso, that are di-
rectly verifiable in a single image. Gradient-based
attributions (see Figure 3a) consistently show in-
creased concentration over limb and torso regions
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Task Tier MetaCLIP 2 OpenCLIP SigLIP
Accuracy Macro F1 Accuracy Macro F1 Accuracy Macro F1

Binary
Tier 1 0.938 0.938 0.907 0.907 0.565 0.516
Tier 2 0.751 0.742 0.850 0.847 0.523 0.490
Tier 3 0.731 0.714 0.876 0.875 0.539 0.537

Multi-class
Tier 1 0.688 0.686 0.712 0.708 0.365 0.346
Tier 2 0.551 0.508 0.526 0.533 0.316 0.259
Tier 3 0.565 0.528 0.628 0.628 0.312 0.302

Table 2: Classification Performance (Binary and Multi-class) across different tiers of prompts

(a) Grad-CAM for three phrasings of the “sitting” concept, showing saliency on the chair
and hip–knee region.

(b) Grad-CAM for three phrasings of the “standing” concept, showing saliency on the legs
and torso.

Figure 3: Grad-CAM visualizations for different phrasings of the concepts “sitting” and “standing”. Increased
specificity in phrasing leads to more focused saliency in relevant body regions.

when such constraints are used, and decreased re-
liance on background texture or incidental objects.
The benefit is class dependent. Categories that are
well captured by a nominal phrase, such as sitting
in uncluttered scenes, receive limited additional
gain. Categories that are visually adjacent in a
still image, such as standing versus walking or run-
ning, benefit from geometric prompts because these
encode spatial structure that separates the classes
without introducing scene bias.

These observations support a simple policy for
low-resource use. Prefer label-style prompts as the
default in closed-set classification with pre-trained
encoders. Introduce compact geometric descriptors
selectively for pairs that remain ambiguous, and
verify with attribution that attention shifts from
background to pose-relevant regions. Reserve ac-
tion verbs for cases where the class definition truly
requires dynamic semantics, since such wording is

not consistently grounded in single images.

5.2 Comparative Model Behaviour and
Calibration

Across encoders, closed-set zero-shot performance
tracks the pre-training objective. OpenCLIP and
MetaCLIP optimise a soft-max contrastive loss
with a learned temperature, which induces com-
petition among text candidates and yields larger
similarity margins in classification. SigLIP opti-
mises independent sigmoid scores for pairs, which
favours retrieval but produces flatter score distri-
butions in a closed set. The flatter distributions
manifest as smaller top-1 minus top-2 margins and
greater sensitivity to prompt phrasing, particularly
for visually adjacent classes.

Calibration follows the same pattern. After unit
normalisation of embeddings, a single tempera-
ture applied to cosine similarities brings CLIP-
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family confidences into closer agreement with ac-
curacy. The same treatment is less effective for
SigLIP model because the training objective does
not enforce cross-class competition, and confidence
therefore reflects pairwise affinity rather than cali-
brated class probability. Reliability curves and ex-
pected calibration error consequently favour Open-
CLIP and MetaCLIP 2 under a shared tempera-
ture, whereas SigLIP remains comparatively mis-
calibrated or require tier-specific scaling.

Baselines clarify the role of alignment and struc-
ture. DINOv3 and a standard ViT combined
with frozen sentence embeddings underperform
and calibrate poorly because the image and text
spaces are learned independently rather than jointly.
YOLOv11-Pose with a simple geometric decision
rule is competitive when keypoints are detected
with confidence, which indicates that explicit pose
structure can substitute for language supervision
when the detector is reliable. Taken together, these
observations suggest that, in data-scarce image-
based recognition, cross-modal alignment with a
contrastive objective provides stronger closed-set
behaviour, while geometric priors provide a com-
plementary path when alignment is weak or text
supervision is constrained.

5.3 Language-Free and Pose-Based Baselines
under Data Scarcity

Vision-only encoders such as DINOv3 and a stan-
dard ViT provide a language-free reference that
isolates the value of cross-modal alignment. When
image embeddings are compared to sentence em-
beddings from an unrelated text model, the spaces
are not jointly learned. As a result the cosine ge-
ometry reflects two independent objectives rather
than class evidence. This mismatch explains the
weaker separability and the poor calibration that
appear even when preprocessing is held constant.
The baselines are therefore informative as a lower
bound. They confirm that generic visual features
carry some signal for posture, yet they also show
that alignment with text during pre-training is the
primary driver of robust zero-shot classification.

A pose-based baseline introduces a different
kind of supervision that is structural rather than
linguistic. YOLOv11-Pose produces 2D keypoints,
and a deterministic rule maps joint configuration
to the three classes. When detections are confi-
dent, the rules are competitive because they test
explicit geometric relations that are stable in a sin-
gle frame. However, performance depends on de-

tection coverage. Occlusion, truncation, unusual
viewpoints, and multiple persons reduce keypoint
quality and lead to abstentions or incorrect geom-
etry, which directly lowers accuracy. Reporting
coverage alongside accuracy is therefore necessary.
On the covered subset the baseline demonstrates
that posture can be resolved without any text, while
the uncovered subset clarifies where structural pri-
ors fail.

These baselines contribute two practical insights
for low-resource use. First, if language supervision
is restricted because of privacy or deployment con-
straints, a pose pipeline can recover a substantial
fraction of performance provided that person de-
tection is dependable. Second, if a language-free
heuristic is required for simplicity, cosine scoring
between DINOv3 or ViT features and frozen sen-
tence embeddings should be treated as a diagnostic
tool rather than as a calibrated classifier. In com-
bination with the multimodal results, the baselines
indicate that cross-modal alignment should be the
default, and that explicit pose structure is a useful
fallback when alignment is unavailable or when
prompts cannot be used.

5.4 Attention Maps and Error Patterns in
Still-Image HAR

Attribution on the sitting examples shows a consis-
tent shift as prompt specificity increases. The label-
style prompt yields broad responses that cover the
person and nearby objects. Adding an action cue
narrows the response toward the pelvis and the sup-
porting surface. Geometric phrasing concentrates
the map on hips, knees, and the contact region with
the chair. This progression indicates that geomet-
ric wording encourages the model to prefer pose
evidence over contextual cues.

For standing, the label-style prompt again pro-
duces diffuse maps with noticeable activation on
salient background regions as seen in Figure 3b.
The action cue that mentions stillness reduces
spread and increases activation around the legs and
feet. The geometric formulation further localises
energy along the vertical axis of the body, espe-
cially the shins and torso. When predictions are
incorrect for standing, the maps typically remain
broad and include background structure, which sug-
gests insufficient reliance on limb configuration in
those cases.

Two practical uses follow. First, attribution can
serve as a prompt diagnostic: adopt geometric
phrasing when maps remain diffuse under a label-
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style prompt, and retain the minimal prompt when
maps are already concentrated on limbs and joints.
Second, report simple map statistics alongside ac-
curacy, such as the proportion of normalised heat
inside a person region and the entropy of the map.
Higher in-person proportion and lower entropy cor-
relate with the tighter, pose-focused responses ob-
served for the geometric prompts in both sitting
and standing.

5.5 Practical Implications, Robustness, and
Limitations

Practical implications In data-scarce settings,
a label-style prompt for each class with unit-
normalised embeddings and a single temperature
applied to cosine scores is a strong baseline. When
confusions remain for visually adjacent categories,
replace the label with a compact geometric descrip-
tion for those specific classes. Monitor decision
confidence with the top-one minus top-two similar-
ity margin. Introduce an abstention rule based on a
margin threshold for low-confidence cases. If lan-
guage supervision is not available, a pose pipeline
that uses YOLOv11-Pose with a deterministic ge-
ometric rule provides an alternative, provided that
keypoint detection is reliable.

Robustness considerations Performance de-
pends on image framing and resolution. Crops
that remove feet or hips reduce margins for pos-
ture classes, therefore detection and resizing should
preserve the lower body. Resolution influences
prompts that encode limb configuration. The native
224 input supports fair comparison, while higher
resolution can improve separation when resources
allow. Paraphrases within a tier can shift scores, so
a small prompt ensemble per class stabilises pre-
dictions with limited overhead. Calibration differs
across encoders. Fit a single temperature once per
model and keep it fixed across tiers to preserve
comparability. For the pose baseline, report cover-
age since occlusion, truncation, and small subjects
reduce the fraction of usable detections.

Limitations Utilizing a small COCO-derived
subset (285 images) focusing only on three single-
person posture classes (sitting, standing, walk-
ing/running) from still images, inherently limits
its external validity and applicability to real-world
Human Activity Recognition (HAR) where tempo-
ral cues are essential. Additionally, the discovery
of "prompt overfitting" is based solely on hand-
crafted English prompts across a limited set of en-

coders (OpenCLIP, MetaCLIP 2, SigLip) and veri-
fied using only Grad-CAM for qualitative analysis.
This means the conclusions apply most directly
to static, image-based posture classification under
severe data scarcity.

6 Conclusion

This study examined how natural language prompt
specificity functions as a form of supervision at
inference time for zero shot posture recognition
under extreme data scarcity. By holding all visual
processing constant and varying only the wording
of class prompts across three tiers, we identified a
consistent and counterintuitive pattern in modern
VLMs: stronger encoders such as MetaCLIP 2 and
OpenCLIP perform best with minimal label-style
prompts, while additional descriptive detail reduces
accuracy, a phenomenon we term prompt overfit-
ting. Conversely, lower-performing models benefit
from compact geometric descriptions, particularly
for visually adjacent postures. Attribution analyses
further showed that prompt wording shifts model
attention toward or away from pose relevant re-
gions, clarifying why specificity can help or hinder
depending on encoder strength.

Together with comparisons to vision only and
pose based baselines, these findings provide practi-
cal guidelines for deploying VLMs in low-resource,
image-based Human Activity Recognition (HAR)
settings. Label-style prompts serve as a strong de-
fault, while geometric descriptions can assist when
distinctions are subtle and model capacity is lim-
ited. More broadly, the results demonstrate that
prompt semantics act as implicit priors that can
either reinforce or misalign the visual grounding of
multimodal encoders.

Future work should extend this analysis to
larger and more diverse datasets, multi-person and
occlusion-heavy scenes, multilingual and LLM-
generated prompts, additional VLM backbones,
and more advanced attribution techniques. Such
work is necessary to fully understand and gen-
eralise the behavioural patterns observed in this
study.
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Abstract
Large language models excel on broad multilin-
gual benchmarks but remains to be evaluated ex-
tensively in figurative and culturally grounded
reasoning, especially in low-resource context.
We present BengaliFig, a compact yet richly
annotated challenge set that targets this gap in
Bengali, a widely spoken low-resourced lan-
guage. The dataset contains 435 unique rid-
dles drawn from Bengali oral and literary tra-
ditions. Each item is annotated along five or-
thogonal dimensions capturing reasoning type,
trap type, cultural depth, answer category, and
difficulty, and is automatically converted to mul-
tiple–choice format through a constraint–aware,
AI–assisted pipeline. We evaluate eight frontier
LLMs from major providers under zero–shot
and few–shot chain–of–thought prompting re-
vealing consistent weaknesses in metaphorical
and culturally specific reasoning. BengaliFig
thus contributes both a diagnostic probe for
evaluating LLM robustness in low-resource cul-
tural contexts and a step toward inclusive and
heritage-aware NLP evaluation. Data and eval-
uation code is available at https://github.
com/chaoSefat/Bengali-Fig

1 Introduction
Over the years we have seen several largescale
Question-Answer(QA) datasets such as
SQuAD (Rajpurkar et al., 2016), TriviaQA (Joshi
et al., 2017) and Natural Questions (Rajpurkar et al.,
2016). Datasets such as DROP (Dua et al., 2019),
ARC (Clark et al., 2018) and MMLU (Hendrycks
et al., 2021) push models towards deeper knowledge
and structured reasoning skills rather than simple
literal QA. Large Language Models (LLMs) have
achieved impressive results on such large-scale
benchmarks. However, figurative, metaphorical
and culturally grounded reasoning are blindspots
of these large scale datasets. While some work
has been done in metaphor detection (Leong
et al., 2020), (Maudslay et al., 2020), (Lu and

Wang, 2017), (Wang et al., 2019),the focus is
on high-resourced languages such as Chinese
and English, leaving many widely spoken but
under-resourced languages unexplored.

Small, focused probe tasks have proven use-
ful for diagnosing specific reasoning capabilities
(e.g., the Winograd Schema Challenge (Levesque
et al., 2012), HANS (McCoy et al., 2019),
StressTest (Naik et al., 2018)). Such resources
demonstrate that fewer deliberately curated exam-
ples can reveal failure modes that large corpora and
benchmarks do not reveal. This is particularly im-
portant for low-resource languages, where cultural
and oral traditions encode figurative reasoning that
is rarely captured by existing datasets.

Riddles are an oral and literary form rich in
metaphor, misdirection, and local knowledge form
a natural diagnostic arena but are absent from cur-
rent evaluation suites. Bengali figurative riddles
often encode perceptual and symbolic cues, refer-
encing color, form, sound, and motion and thus
offering a textual lens into reasoning that naturally
spans multiple modalities. Bengali is the 7th most
spoken language in the world1, yet no evaluation
specifically probes figurative or culturally grounded
reasoning in Bengali.

To address this gap we present BengaliFig, a
challenge set crafted to stress-test figurative reason-
ing and cultural grounding in Bengali. Our contri-
butions are threefold:

1. Challenge set creation: We curate and release
a corpus of 435 unique Bengali riddles, each
manually deduplicated, normalized and struc-
tured as Multiple Choice Question (MCQ) for-
mat.

2. Multi-axis Annotation: We annotate our
curated QA dataset over five orthogonal di-

1https://www.statista.com/statistics/266808/
the-most-spoken-languages-worldwide/
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mensions capturing cognitive and cultural at-
tributes.

3. Comprehensive evaluation: We probe eight
frontier LLMs under zero-shot and few-shot
chain-of-thought prompting. We then analyze
their performance breakdown over the anno-
tated dimensions and prompting techniques.

Our results demonstrate that majority of the fron-
tier LLMs struggle significantly with Bengali rid-
dles. BengaliFig thus fills a critical gap by pro-
viding a culturally grounded, low-resource testbed
for probing LLM robustness and for guiding more
inclusive NLP research.

2 Related Works
Multilingual benchmarks such as FLORES-200
(Team et al., 2022), XTREME (Hu et al., 2020), and
IndicGLUE (Kakwani et al., 2020) include Bengali
but focus primarily on translation, classification, or
factual QA. Dedicated Bengali resources include
BanglaNLG for natural language generation (Bhat-
tacharjee et al., 2023), BanglaRQA for reading com-
prehension (Ekram et al., 2022), Vashantor for di-
alect translation (Faria et al., 2023), BenNumEval
for numerical reasoning (Ahmed et al., 2025), and
BEnQA for middle- and high-school QA (Shafayat
et al., 2024). These tasks remain largely literal and
do not assess figurative, metaphorical, or culturally
embedded reasoning.

Research on figurative language has focused pri-
marily on high-resource languages such as English
and Chinese. Prior work includes metaphor detec-
tion (Leong et al., 2020; Maudslay et al., 2020; Lu
and Wang, 2017; Wang et al., 2019) and broader
figurative understanding (Jang et al., 2023; Lai and
Nissim, 2024). Riddle-focused resources such as
BiRdQA (Zhang and Wan, 2021), CC-Riddles (Xu
et al., 2023), and Visual Riddles (Bitton-Guetta
et al., 2024) probe models’ ability to integrate
metaphor, ambiguity, and cultural knowledge. How-
ever, these datasets remain concentrated in high-
resource languages and do not extend to Bengali.

Despite Bengali being one of the world’s most
widely spoken languages, no benchmark targets
metaphorical, figurative, or culturally grounded rea-
soning. Such abilities are deeply rooted in cultural
context, making Bengali riddles a natural stress-test
for LLMs. Carefully constructed, high-signal ex-
amples can reveal failure modes invisible to large
benchmarks (Levesque et al., 2012; McCoy et al.,

2019; Naik et al., 2018), motivating our probe-set
design.

3 BengaliFig
We describe our methodology for BengaliFig
dataset construction in this sections. Our steps are
described below:

3.1 Data Collection and Preprocessing
We built the BengaliFig corpus by scraping rid-
dles from blogs, forums, and digital archives, then
filtering and cleaning them through a compact
three–stage pipeline: deduplication, normalization,
and a final manual audit.

3.1.1 Deduplication
To ensure that every item is unique yet representa-
tive, we combined automatic retrieval with human
checks. Each riddle question is a Unicode string qi.
For every pair (qi, qj) we compute the normalized
Levenshtein distance

d(qi, qj) =
lev(qi, qj)

max(|qi|, |qj |)
∈ [0, 1], (1)

where lev(·, ·) is the minimal edit count. Pairs with
d(qi, qj) ≤ τ were flagged as candidates, starting
with τ = 0.10 for high precision and gradually re-
laxed to 0.30 for recall. Flagged pair was automati-
cally deduplicated only if the answers were perfect
overlaps. Within each candidate cluster, we kept
the element with smallest identifier as the canonical
form. Native speakers then reviewed all the remain-
ing candidates to discard duplicates. This hybrid
design delivered near–perfect precision while cap-
turing subtle paraphrases. Our initial Collection
consisted of 770 entries. 238 were removed after
the automatic and manual deduplication.

3.1.2 Answer Normalization
We standardized answer text by removing extra-
neous punctuation and isolating the core answer
when sources contained extra explanation. For a
raw answer α and delimiter set S = {“:”, “–”, “|”,
“—”} we define, α̂ = first_split(α,S), logging
them E = {(α, α̂)} for manual audits.

3.1.3 Manual Audit
Finally, two native speaker auditors performed a full
pass to catch residual issues with answer normal-
ization edits, mistranslations, malformed riddles,
hidden duplicates, or question–answer mismatches.
Unsalvageable entries were removed; ambiguous
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Figure 1: LLM-assisted annotation pipeline. Heuristic
priors p0 seed LLM predictions ŷ, validated against label
set Y and finalized as y∗ by human annotators.

but valuable riddles were lightly edited to maintain
fluency and logical consistency. Total of 97 entries
were removed after manual audit.

3.2 LLM-Assisted Human Annotation
Annotating riddles is challenging because solutions
hinge on culture, figurative language, and multi-step
reasoning. Each riddle is labeled along five orthogo-
nal dimensions, making purely manual work costly.
We therefore adopt an LLM-assisted framework
in which a large language model proposes candi-
date labels that are then verified and, if necessary,
corrected by human annotators. We describe our
annotation schema below where we just list down
the five orthographic dimensions and their set of
possible values. In Appendix A.7 we provide the
annotation schema with detailed explanation of the
labels alongside the LLM prompt.

Annotation Schema. The five dimensions cap-
ture complementary cognitive and cultural proper-
ties:

Reasoning Type
(r ∈ R): { metaphorical, commonsense, descrip-
tive, wordplay, logical_deduction, compound }

Trap Type
(t ∈ T ): surface_literal, multiple_valid, cul-
turally_specific, linguistic_trick, misdirection, ar-
chaic_reference, none.

Cultural Depth
(c ∈ C) : {universal, cultural_specific}.

Answer Type
(a ∈ A): place, person, animal, plant, object, natu-
ral_phenomenon, body_part, food_drink, concept,
quantity, text_symbol.

Difficulty
(d ∈ D) : {easy,medium, hard}.

All setsR, C, T ,A,D are mutually exclusive and
exhaustive.

Framework: The annotation pipeline, illustrated
in Figure 1, proceeds in three stages described be-
low.
Stage 1: Heuristic Based Pre-Labeling. Given a
riddle–answer pair (q, α), we first compute a vec-
tor of heuristic priors p0 ∈ [0, 1]|A| for the an-
swer_type label using regex patterns and gazetteer
look-ups derived from Bengali morphology. For
example, if α contains suffixes like “পুর/নগর”
(pur/nagar) or matches any token in the lexicon
set form places, Lplace, we set p0[place] = 1. Sim-
ilar detectors exist for animals, plants, body parts,
natural phenomena, etc. These lightweight priors
injected into the prompt to stabilize the LLM gen-
eration.
Stage 2: LLM Candidate Annotation. Let the
complete label space be Y = R×A×D×T×C, cov-
ering reasoning type, answer type, difficulty, trap
type, and cultural depth. The LLM (DeepSeek V3)
receives (q, α,p0) and a compact schema prompt,
and must output a candidate annotation for each
(q, α) pair as a single valid tuple in strict JSON
format: ŷ = (r, a, d, t, c) ∈ Y . Temperature is
fixed at τ = 0.1 to minimize randomness. A valida-
tor enforces type constraints; any invalid ŷ triggers
re-prompting with the same p0. Cost effective in-
ference API was the deciding factor in choosing the
DeepSeek for suggesting annotation. LLM’s task
is not to provide final annotation but suggestions
in structured JSON schema which is is easy to for
annotators to edit and provide the final annotation,
saving time.
Stage 3: Human Verification Two native-speaker
annotators receive a set of entries to annotate. We
first test inter annotator agreement on a 5% (22 out
of 435 items) stratified set, and obtained Krippen-
dorff’s alpha = 0.9034. (Comprehensive calculation
in Appendix A.1). The obtained score is well above
the acceptable threshold (0.85) to continue. The
remaining 413 riddles were single-annotated after
establishing sufficient agreement. The annotators
inspect each candidate annotation ŷ and either ac-
cept it or supply a corrected gold label y∗, produc-
ing the final gold-standard labels as illustrated in
Figure 2. This hybrid design substantially reduces
annotation effort while retaining reliability. We
also observed that annotation time reduced from
≈ 7.3 minutes (manual) to 2.4 minutes per riddle.
This human-in-the-loop design preserves cultural
fidelity while reducing average annotation time.
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    "question": "�শষ পােত জবাব �নই, উৎসেব মেন...(truncated)
    "answer": "িম��",

    "reasoning_type": "compound",
    "answer_type": "concept",
    "difficulty": "medium",

    "trap_type": "culturally_specific",
    "cultural_depth": "cultural_specific", Human Annotator

"reasoning_type": ✅
    "answer_type": ❌
    "difficulty": ✅
    "trap_type": ✅

    "cultural_depth": ✅
LLM Generated

Annotation 

    "question": "�শষ পােত জবাব �নই, উৎসেব মেন...(truncated)
    "answer": "িম��",

    "reasoning_type": "compound",
    "answer_type": "food_drink",

    "difficulty": "medium",
    "trap_type": "culturally_specific",

    "cultural_depth": "cultural_specific",

Updated Correct
Annotation 

Figure 2: Example of Human annotator providing final
validation to LLM generated candidate annotations

3.3 Exploratory Data Analysis

Figure 4 summarizes the distribution of the five
annotation dimensions across all 435 riddles. Rea-
soning type is dominated by metaphorical riddles
(224, 52%), which further underscores the contri-
bution of our dataset providing a test bench for Ben-
gali figurative and metaphorical reasoning. Answer
types are diverse: tangible objects leading (127)
while culturally salient categories are also well rep-
resented. Difficulty skews toward the middle, with
medium items forming the majority (235), only 8
questions rated hard, and the rest easy. The riddle
style is largely surface–literal in its trap type (358),
with smaller pockets of linguistic_trick (57). Ma-
jority riddles require cultural knowledge, with cul-
tural_specific depth accounting for 285 instances.

In Figure 3 surface–literal traps occur across
both cultural depths but are strongly concentrated
in cultural_specific items (213 vs. 145), whereas lin-
guistic_trick riddles are almost exclusively cultural
(56 of 57), highlighting that deceptive wordplay is
closely tied to Bengali linguistic nuance. We also
observe that riddles requiring wordplay (75 of 83)
and compound (63 of 72 ) reasoning tend to be cul-
turally specific. While commonsense reasoning (31
of 42) is more universal.

Cross–label analyses (Figure 5) reveals that rea-
soning complexity correlates with difficulty: over
half of compound riddles are medium and a notable
7 are the only cluster of hard questions. Metaphori-
cal riddles tend to be more inclined towards medium
difficulty, whereas commonsense riddles remain
predominantly easy. The figure on the right illus-
trates that culturally specific riddle tends to be more
difficult than the ones that can be solved with uni-
versal basic knowledge.

3.4 MCQ Format Creation
Drawing inspiration from (Zellers et al., 2019) we
leverage LLMs to generate distractors and to cre-
ate multiple-choice questions (MCQs). Using a
fully automated, two-stage AI pipeline designed to
balance diversity in candidate distractors with pre-
cision in final selection. The pipeline consists of 3
steps:

Step 1: Constraint extraction and prompt con-
ditioning. Many Bengali riddles state explicit
surface clues such as required grapheme count
(অক্ষর akṣar ’grapheme’) or properties like size,
color, number, shape, or time. We apply rule-based
detectors that (a) identify Bengali numeral words
and Bengali digits (১, ২, ৩) when answer’s required
grapheme count is mentioned, and (b) flag other ad-
ditional cues such as size, color, shape, count, time
etc. These constraints are packed into a structured
prompt and attached to each riddle together with
its question, answer, reasoning type (r ∈R), and
answer type (a∈A).

Step 2: Constraint and misdirection-aware gen-
eration. We give the prompt with extracted con-
straints to a generator LLM. The generator produces
n = 6 distractors that exploit the riddle’s surface
misdirection rather than copying the correct answer.
Candidates must: (i) seem plausible under the sur-
face meaning, (ii) sound natural to Bengali speakers,
and (iii) follow all constraints like grapheme length.
We use higher sampling temperature for diverse
outputs.

Step 3: Automated selection under explicit cri-
teria. A separate selector LLM ranks candidates
using five criteria: misdirection power, first-instinct
appeal, surface-logic coherence, constraint com-
pliance, and diversity of traps. The selector uses
lower temperature for stable results. We apply ba-
sic checks, shuffle options, and record the correct
answer’s position.

Model heterogeneity: We use two different mod-
els in our pipeline for practical and methodolog-
ical reasons. DeepSeek-V3 serves as the genera-
tor, while GPT-4 handles the selection task. This
division separates the generation and evaluation
processes to reduce self-endorsement bias. The
choice of DeepSeek for generation was driven by
cost considerations and its accessible API. For the
selection stage, we chose GPT-4 due to its estab-
lished reliability in evaluation tasks and consistent
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performance across different tasks. (Full prompts
in Appendix A.2)

Observations In Bengali graphemes represent
syllables. Even with constraint blocks, generated
distractors often ignored grapheme count require-
ment. Not a single riddle with a grapheme con-
straint received a complete set of options meeting
that limit. The failure of LLMs to generate dis-
tractor options conforming to the grapheme count
reveals their graphemic and phonological weakness
in non Latin scripts. In contrast, answer-type con-
straints (e.g., country, fruit, language) were largely
respected.

4 Experiments and Results

To rigorously assess the figurative reasoning capa-
bilities of large language models (LLMs) on Ben-
galiFig, we developed a comprehensive and robust
evaluation framework. This framework is designed
to handle multiple model providers, support diverse
evaluation modes (zero-shot, and few shot chain-
of-thought prompting (CoT)), and guarantee repro-
ducibility through systematic result logging and

metadata tracking.
We evaluate a diverse set of LLMs across ma-

jor providers: (i) OpenAI: GPT-4.1 and GPT-5,
(ii)Anthropic: Claude Sonnet 4.0 and Claude Opus
4.1, (iii)DeepSeek: DeepSeek-V3.12, (iv)Meta:
LLaMA-4 Maverick, LLaMA-4 Scout, (v)Qwen:
Qwen3-235B

4.1 Zero-Shot Evaluation
We first assess all models in a strict zero-shot setting,
where each riddle is presented with four multiple-
choice options and models must return only the
single correct letter (A-D). Accuracy is reported
over the entire 435-item test set and key annotation
dimensions. See Appendix A.3 for prompt and
result reproducibility.

Overall Performance Rankings. Table 1
presents the comprehensive performance hierarchy.
GPT-5 achieves the highest accuracy at 82.3%,
followed closely by Claude-Opus-4.1 at 79.8%,
establishing a clear top tier. Performance then

2DeepSeek-V3.1 was used for final evaluation, upgrading
from V3 used in earlier steps.
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Model Overall Acc.
GPT-5 82.3
Claude-Opus-4.1 79.8
GPT-4.1 69.0
LLaMA-4 Maverick 63.2
DeepSeek-V3.1 59.8
Qwen3-235B 58.6
LLaMA-4 Scout 55.2
Claude-Sonnet-4.0 50.8

Table 1: Zero-shot overall accuracy (%)

drops substantially to GPT-4.1 (69.0%), creating
a notable 10.8-point gap that suggests qualitative
differences in reasoning capabilities. The remain-
ing models cluster in the 55-63% range, with
Claude-Sonnet-4.0 performing weakest at 50.8%
and barely exceeds random chance in our 4-option
multiple-choice format.

Reasoning Type Breakdown. Figure 6 reveals
pronounced variation in accuracy across reason-
ing categories. All models perform well on de-
scriptive and logical deduction tasks, with top per-
formers achieving perfect accuracy (100%) while,
metaphorical reasoning poses was more challeng-
ing. Even for leading models such as GPT-5 and
Claude-Opus plateau around 80-81%, suggesting
inherent difficulty in abstract conceptual mapping
within the Bengali cultural context. Wordplay
emerges as the most discriminative category, where
performance gaps exceed 40 percentage points.
GPT-5 leads at 84.3%, while Claude-Sonnet-4.0
achieves only 39.8%. This significant gap under-
scores the linguistic sophistication required for Ben-
gali phonetic and orthographic manipulation, where
models must simultaneously process sound patterns,
semantic ambiguity, and cultural references. Com-
monsense and compound reasoning showed inter-

mediate difficulty levels, with top models reaching
81-83% accuracy.

Trap Type. Surface-literal traps dominate the
dataset (358 of 435), so any apparent correlation be-
tween trap susceptibility and overall accuracy may
be confounded by the class imbalance; detailed anal-
ysis is provided in Appendix A.6. Our analysis of
trap-type correlations is only exploratory.

Difficulty and Cultural Depth Analysis. Ta-
bles 2 and 3 reveal systematic performance pat-
terns across BengaliFig’s annotation dimensions.
Difficulty levels show clear stratification: accu-
racy decreases monotonically from Easy (Mean:
70.1%, Range: 47.4–85.9%) to Medium (61.7%,
53.2–80.0%) to Hard (29.7%, 0.0–62.5%). The
substantial 40.4-point mean gap between Easy and
Hard categories validates our annotation scheme
while demonstrating genuine cognitive challenges.
Even GPT-5 achieves only 62.5% on Hard riddles.
Cultural depth analysis reveals consistent but more
subtle effects: universal riddles outperform cultural-
specific counterparts across all models, with a mean
advantage of 10.0 percentage points. This system-
atic disparity (ranging from +5.6 for GPT-5 to +21.7
for GPT-4.1) indicates that cultural knowledge re-
quirements impose additional cognitive load be-
yond linguistic competence alone. Notably, the cul-
tural gap persists even for extensively multilingual
models, suggesting deeper pragmatic understand-
ing challenges rather than surface-level cultural fact
retrieval limitations.

Grapheme–Constraint Evaluation. Some rid-
dles explicitly specify that the correct answer must
contain a fixed number of Bengali graphemes, a
cue that humans can easily exploit to eliminate
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Figure 6: Performance breakdown by reasoning type, revealing significant variation across cognitive categories.

implausible options. Despite explicitly prompt-
ing this constraint, none of the LLMs produced
a full set of distractors adhering to the grapheme
counts, effectively turning these riddles into elimi-
nation tasks for humans. Across this 28–item sub-
set, GPT-5 achieved the highest accuracy (85.7%),
followed by GPT-4.1 (60.7%) and Claude-Opus-
4.1 (42.9%). All other models, including Claude-
Sonnet-4.0 (28.6%), Qwen3 (32.1%), DeepSeek-
V3.1 (35.7%), and LLaMA-4 variants (7.1–42.9%)
performed much worse. This sharp degradation
suggests that current LLMs, further reinforces that
even strong multilingual ones, struggle to interpret
or consistently respect orthographic and phonologi-
cal constraints in non-Latin scripts.

Proprietary API Cost. Considering API usage
cost in proprietary models, despite leading in ac-
curacy, GPT-5 and Claude-4.1-Opus incur several-
fold higher API costs than GPT-4.1(Appendix A.4).

4.2 Few-Shot Chain-of-Thought Analysis
To investigate whether structured reasoning can
improve performance on challenging riddles, we
conduct few-shot Chain-of-Thought (CoT) evalu-

Model Easy Med Hard
GPT-5 85.9 80.0 62.5
Claude-Opus-4.1 84.4 77.0 50.0
GPT-4.1 78.6 62.6 25.0
LLaMA-4 Maverick 69.3 58.7 50.0
DeepSeek-V3.1 69.8 53.2 12.5
Qwen3-235B 66.7 54.0 0.0
LLaMA-4 Scout 58.9 54.0 0.0
Claude-Sonnet-4.0 47.4 54.0 37.5

Mean 70.1 61.7 29.7
Std Dev 13.7 10.1 24.1

Table 2: Zero-shot accuracy (%) by difficulty level on
BengaliFig.

ation on a strategically selected subset of Bengal-
iFig. We identify the subset of ”hardest yet solv-
able” instances which are riddles where exactly one
model succeeded in zero-shot evaluation while all
others failed. This ensured that our analysis focuses
on genuinely difficult but not impossible reason-
ing challenges. See Appendix A.5 for prompt and
reproducibility notes.

Experimental Design. Our few-shot CoT prompt
provides two Bengali riddle exemplars with explicit
reasoning traces, followed by a structured three-
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Model Cultural Universal
GPT-5 80.4 86.0
Claude-Opus-4.1 78.6 82.0
GPT-4.1 63.5 79.3
LLaMA-4 Maverick 57.5 74.0
DeepSeek-V3.1 54.0 70.7
Qwen3-235B 54.4 66.7
LLaMA-4 Scout 52.3 60.7
Claude-Sonnet-4.0 50.2 52.0

Mean 61.4 71.4
Std Dev 11.4 11.1

Table 3: Zero-shot accuracy (%) by cultural depth on
BengaliFig.

Model Zero-Shot CoT Gain(%)
GPT-4.1 0.0 30.0 +30.0
Claude-Opus-4.1 20.0 43.3 +23.3
DeepSeek-V3.1 3.3 26.7 +23.3
LLaMA-4 Maverick 6.7 26.7 +20.0
LLaMA-4 Scout 3.3 20.0 +16.7
Qwen3-235B 6.7 23.3 +16.7
Claude-Sonnet-4.0 16.7 26.7 +10.0
GPT-5 43.3 43.3 0.0

Table 4: Few-shot Chain-of-Thought performance (%)
on hardest yet solvable BengaliFig subset (n=30).

step methodology: (1) riddle type identification and
question analysis, (2) systematic option evaluation,
and (3) logical conclusion formation. This frame-
work encourages models to decompose complex
reasoning while maintaining cultural and linguistic
authenticity through native Bengali instruction.

Differential CoT Efficacy. Table 4 reveals strik-
ing heterogeneity in CoT responsiveness across
model families. GPT-4.1 demonstrates the most
substantial improvement, achieving a 30% accu-
racy gain (0% → 30%) with 9 successful correc-
tions out of 30 initially failed cases. Claude-Opus-
4.1 and DeepSeek-Chat both achieve 23.3% im-
provement rates, though from different baselines,
Claude-Opus from a stronger initial position (20%
→ 43.3%) and DeepSeek from near-zero perfor-
mance (3.3% → 26.7%).

Conversely, GPT-5 shows zero improvement
with CoT with 0% despite starting from the highest
baseline (43.3%). This counterintuitive finding sug-
gests that GPT-5’s zero-shot reasoning may already
be near-optimal for this task difficulty level, with
CoT providing redundant rather than complemen-
tary processing.

Baseline Performance and CoT Ceiling Effects.
An inverse relationship emerges between zero-shot

accuracy and CoT improvement. Models with low
initial performance gain most, while stronger mod-
els show diminishing returns. This ceiling effect
may indicate that CoT mainly helps bridge basic rea-
soning gaps rather than refine high-level reasoning.
We caution that this finding is based on a limited
30-item subset. Across models, accuracy improve-
ments remain below 30%, with no system exceeding
43.3%, aligning with the “hardest yet solvable” de-
sign and underscoring the cognitive difficulty of
culturally grounded Bengali riddles.

Final Insights. Few-shot CoT results reveal that
(1) structured reasoning aids mid-tier models but
yields limited benefit for top-tier ones, and (2) cul-
tural–linguistic reasoning challenges persist despite
explicit reasoning cues. These patterns suggest that
deeper cultural grounding, not additional prompt-
ing, is key to advancing performance on BengaliFig.

5 Conclusion

We introduced BengaliFig, a small but carefully
constructed challenge set for probing figurative and
culturally grounded reasoning in Bengali. Our
435 riddles are annotated along five orthogonal
dimensions and converted to multiple–choice for-
mat through an AI–assisted pipeline. Evaluation of
eight frontier LLMs shows that even state-of-the-
art systems struggle, especially with metaphorical
and culturally specific riddles. Few-shot chain-of-
thought prompting yields only limited gains, con-
firming diminishing returns for explicit reasoning
guidance. A focused analysis of riddles containing
explicit Bengali grapheme-count clues reveals a fur-
ther weakness: most models ignore simple phono-
logical constraints in this non-Latin script, leading
to sharp accuracy drops. These findings highlight
persistent gaps in cross-lingual and script-aware rea-
soning and underscore the need for resources that
emphasize depth and cultural specificity rather than
scale. Although BengaliFig is a text-only resource,
many riddles evoke inherently multimodal reason-
ing, linking linguistic metaphor with perceptual and
sensory imagery. Future extensions could therefore
explore how multimodal models grounded in lan-
guage, vision, and sound handle such culturally
embedded reasoning tasks in low-resource contexts.
We release the data, prompts, and scripts to support
future work on figurative and culturally informed
evaluation in low-resourced languages.
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Limitations
Our current design focuses solely on textual rea-
soning, although many riddles implicitly reference
visual, auditory, or tactile attributes that future mul-
timodal extensions could capture. Our design as a
focused challenge set introduces several constraints.
First, the probe set is small (435 riddles), which lim-
its statistical power for fine-grained comparisons
and cannot cover the full range of Bengali figurative
language. Second, although each item is annotated
along five dimensions with native-speaker verifica-
tion, annotation was performed by only two anno-
tators. After a small pilot to check inter-annotator
agreement, the remaining data were split between
them rather than double-annotated, so agreement
estimates are limited and some subtle labels may
reflect individual judgment. Third, our evaluation
of few-shot chain-of-thought (CoT) prompting was
restricted to a curated subset of the hardest but solv-
able riddles. This provided useful evidence that
CoT helps mid-tier models but does not signifi-
cantly raise overall reasoning ability, yet running
few-shot CoT across the entire probe set could yield
additional insights. Fourth, we did not obtain a hu-
man performance baseline. Although we planned
a small user study to compare human solvers with
LLMs, participation relied on voluntary sign-ups
and we did not receive enough responses to draw
meaningful conclusions.

Ethics Statement
All riddles were collected from publicly available
Bengali websites and digital archives. We removed
entries containing personally identifiable informa-
tion or offensive content and included only items
suitable for open research release. Two native speak-
ers performed the annotations after a small pilot to
check inter-annotator agreement.

The dataset is released solely as an evaluation
resource. Its small size makes it unsuitable for train-
ing large models, but it could still be misused to
overstate cultural competence. We therefore doc-
ument its scope and limitations and encourage re-
sponsible use in research on figurative reasoning
and cross-lingual evaluation.
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A.1 Inter–Annotator Reliability Calculation
To quantify inter–annotator agreement on the 5 %
stratified audit set, we computed Krippendorff’s α
across all five annotation dimensions jointly.

Data. The audit set contained 22 riddles, each an-
notated along 5 independent dimensions, yielding
N = 22 × 5 = 110 annotation units. Each unit
was labeled by two annotators.

Krippendorff’s α. For nominal data,

α = 1− Do

De
,

where Do is the observed disagreement and De is
the expected disagreement under chance.

Because the five dimensions differ in category
counts (K1 = 6, K2 = 7, K3 = 2, K4 =
11, K5 = 3), the expected disagreement is the
mean of the per–dimension maxima:

De =
1

5

5∑

i=1

(
1− 1

Ki

)
≈ 0.7532.

Observed disagreement. Across the N = 110
units the annotators disagreed on d = 8 units, so
the observed disagreement is

Do =
d

N
=

8

110
≈ 0.0727.

Reliability. Substituting into the formula,

α = 1− Do

De
= 1− 0.0727

0.7532
≈ 0.9034.

Interpretation. Following Krippendorff’s guide-
lines (α ≥ 0.80 for reliable conclusions), the ob-
tained α = 0.9034 indicates high agreement.
Therefore it is scientifically acceptable to proceed
with the planned non–overlapping annotation of the
remaining dataset.

Per–dimension statistics. Table A1 reports
per–dimension disagreement counts and Krippen-
dorff’s αi values on the 5% (22 items) stratified
audit set. The per–dimension disagreements (di)
sum to the eight total disagreements reported in
the main text. Expected disagreement De,i for
each dimension was computed under the maxi-
mal–disagreement assumption for nominal cate-
gories, De,i = 1 − 1

Ki
, and per–dimension reli-

abilities were obtained as αi = 1 − Do,i/De,i.
The joint reliability across all five dimensions is
α ≈ 0.90345, consistent with the value reported in
the main text and indicating high inter–annotator
agreement.

A.2 Prompt Templates Used for MCQ Format
Creation

A.2.1 Distractor Suggestion Prompt
You are an expert in Bengali riddles and
psychological misdirection. Your task is
to create {n} clever distractors that ex-
ploit the riddle’s intended misdirection.

RIDDLE: {question}

CORRECT ANSWER: {answer}

STRATEGY: Bengali riddles work by
misdirecting the reader toward an obvi-
ous but wrong interpretation. Your dis-
tractors should capitalize on this misdi-
rection, NOT be similar to the correct
answer. Focus on the main question the
riddle seems to be asking at first glance.

ANALYSIS FRAMEWORK:

1. SURFACE INTERPRETATION:
What does the riddle seem to be asking
about at first glance?

2. MISDIRECTION TRAP: What cate-
gory of answers would most people natu-
rally think of?

3. COGNITIVE BIAS: What assump-
tions does the riddle want people to
make?

DISTRACTOR CREATION RULES:
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Table A1: Per-dimension agreement breakdown on the 5% (22 items) audit set.

Dimension K Units Disagreements di Do,i = di/22 De,i = 1− 1/K αi = 1−Do,i/De,i

Reasoning Type (D1) 6 22 3 0.1364 0.8333 0.8364
Trap Type (D2) 7 22 2 0.0909 0.8571 0.8939
Cultural Depth (D3) 2 22 0 0.0000 0.5000 1.0000
Answer Type (D4) 11 22 1 0.0455 0.9091 0.9500
Difficulty (D5) 3 22 2 0.0909 0.6667 0.8636

All – 110 8 0.07273 0.75325 0.90345

1. Focus on the first main question the
riddle seems to ask at first glance.

2. Create answers that fit the OBVIOUS
interpretation.

3. Make them plausible for someone who
hasn’t realized the trick.

4. Include answers from the category peo-
ple would FIRST think of.

5. Add answers that sound logical but
miss the linguistic trick.

6. Avoid answers similar to the correct
answer—they must be from different do-
mains.

7. Make someone think “that makes
sense” before they realize the trick.

8. The answers must be strictly in বাংলা
with no other scripts or languages.

CONSTRAINT REQUIREMENTS (in-
cluded only when detected by the code):

- CRITICAL: All distractors MUST have
exactly {constraints.syllable_count} syl-
lables in Bengali.

- The correct answer “{answer}” has
{constraints.correct_syllables} syllables.

- Count carefully: নদী = 2, সাগর = 3, পাহাড়
= 3, বাংলােদশ = 5

- Additional constraints may appear: size,
color, shape, time references, etc.

EXAMPLE THINKING PROCESS:

- If the riddle appears to ask about coun-
tries, generate country names.

- If it appears to ask about animals, use
animal names.

- If it appears to ask about objects, use
object names.

REQUIREMENTS:

1. Output distractors strictly in বাংলা with
no explanations.
2. Focus on misdirection rather than sim-
ilarity.
3. Ensure cultural appropriateness for
Bengali speakers.
4. Follow detected syllable/letter con-
straints.
5. Create cognitive traps, not semantic
matches.
Output format:
DISTRACTOR_1: বাংলা শব্দ
DISTRACTOR_2: বাংলা শব্দ
…
DISTRACTOR_{n}: বাংলা শব্দ

A.2.2 Distractor Selection Prompt
You are an expert in cognitive psychology
and Bengali riddles. Select the 3 MOST
DECEPTIVE distractors that trap people
in the riddle’s misdirection.
RIDDLE: {question}
CORRECT ANSWER: {answer}
SUGGESTED DISTRACTORS: 1.
িবকল্প
2. িবকল্প
3. িবকল্প
…
SELECTION STRATEGY:
Choose distractors that create the
strongest cognitive traps, NOT the ones
most similar to the correct answer.
EVALUATION CRITERIA:
1. Misdirection Power: How well does
it exploit the riddle’s surface interpreta-
tion?
2. First Instinct Appeal: Would this be
a typical initial guess?
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3. Cognitive Trap Strength: How con-
vincing is it before someone realizes the
trick?
4. Surface Logic: Does it make immedi-
ate sense?
5. Diversity: Prefer distractors from dif-
ferent trap categories.
AVOID:
- Distractors that are too similar to one
another.
- Distractors close to the correct answer.
- Obscure or implausible options.
PRIORITIZE:
- Obvious category-based guesses.
- Immediately logical answers.
- Options that delay the “aha!” moment.
Output format:
SELECTED: [comma-separated num-
bers of the most deceptive options]

A.3 Zero–Shot Evaluation Prompt and
Reproduction Guide

A.3.1 Full Prompt Template
All models were queried in Bengali with a
single-turn user message. For each riddle the script
replaces {question} and {options} with the
actual text and candidates (A–D). The prompt is
shown below exactly as sent to the API.

PROMPT:

িনেচর ধা াধাটি সমাধান করুন এবং সিঠক
উত্তেরর এক অক্ষের (A, B, C, অথবা D) িদন:
প্রশ্ন: question
িবকল্পসমূহ: A) option_1 B) option_2 C)
option_3 D) option_4
শুধু JSON আকাের উত্তর িদন. �কােনা ব্যাখ্যা
বা বণ�না �দেবন না. উদাহরণস্বরূপ: {”উত্তর”:
"<আপনার উত্তর এখােন>"}

English Translation

Solve the following riddle and give the
correct answer as a single letter (A, B, C,
or D):
Question: question
Options: A) option_1 B) option_2 C) op-
tion_3 D) option_4

Provide the answer only in JSON for-
mat. Do not include any explanation or
description. For example: {”Answer”:
”<your answer here>”}

The script enforces a temperature of 0 (except
where a provider disallows it) and does not include
a system message so that every model receives the
same pure zero-shot query.

A.3.2 Reproducibility Notes
To reproduce the reported zero-shot results:

• Environment. Python 3.10+ with the openai
client library and a valid API key for each
provider. Store keys as environment variables
(OPENAI_API_KEY, ANTHROPIC_API_KEY,
NOVITA_API_KEY etc.).

• Dataset. Use the released MCQ JSON file
, where each entry contains the riddle, four
options, the correct option letter, and the five
annotation dimensions.

• Execution. Run the provided script and set
the provider/model names in the settings list.
The script automatically handles batching, rate
limits, and result logging.

• Outputs. For every model a times-
tamped JSON file is created under
results/zero_shot/, containing raw
model responses, extracted predictions, and
per–dimension accuracy statistics.

A.4 Proprietary Model Evaluation Cost on
Zero Shot

Table A2 represents a breakdown of usage cost of
proprietary models. Although GPT-5 and Claude-
4.1-Opus lead the pack in performance, they come
with a significant cost which is several magnitude
higher than GPT-4.1 which placed third in over-
all accuracy. With GPT-5 especially expensive be-
cause its lengthy chain-of-thought outputs generate
many reasoning tokens that count toward usage fees.

Model Cost
GPT-4.1 0.13$
GPT-5 3.40$

Claude-4-Sonnet 0.43$
Claude-4.1-Opus 2.19$

Table A2: API usage cost of proprietary models
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We use a cloud service provider to run evalua-
tion on the open models to reduce infrastructure
overhead. However, that is totally optional, as open
models are available for free to download and use.
As a result, they are not part of API cost analysis.

A.5 Few–Shot Chain-of-Thought Prompt and
Reproduction Guide

A.5.1 Full Prompt Template
For the hardest but solvable subset of riddles we
used a Bengali few–shot chain-of-thought (CoT)
prompt that first presents worked examples and
then requests a step-by-step analysis before giving
the final answer. Below is the exact template;
the three Bengali examples remain fixed, while
{question} and {options} are replaced at run
time.
PROMPT:
”””””””””””””””””””””””””””””

আপিন একটি বাংলা ধা াধার িবেশষজ্ঞ। িনম্ন িকছু
ধা াধার উদাহরণ �দওয়া হেলা, �যখােন ধা াধার
সমাধান িবে�ষণ করা হেয়েছ।
উদাহরণ ১: প্রশ্ন: একটা ঘিড়র উপর িদেয়
একটা �ঘাড়া চেল �গল, ঘিড়টার কটা বাজেব।
িবকল্পসমূহ: A. সাতটা B. বােরাটা C. নটা D.
িতনটা যুিক্ত: ঘিড়র কাটা �ভেঙ যােব, তাই
বােরাটা বাজেব। উত্তর: B

উদাহরণ ২: প্রশ্ন: �কান কার চেল না?
িবকল্পসমূহ: A. �নৌকা B. সাইেকল C. কুকার
D. গািড় যুিক্ত: কুকার যানবাহন নয়, তাই কুকার
চলেত পাের না। উত্তর: C

উদাহরণ ৩: প্রশ্ন: নােকর ডগায় �পেত আটকান
�চতেন মার টান গলায় ধের দাও পটকান...
িবকল্পসমূহ: A. হামানিদস্তা B. লাটু্ট C. হাতুিড় D.
দা যুিক্ত: বণ�না লাটু্টর �বিশেষ্ট্যর সােথ িমেল।
উত্তর: B

এখন িনেচর ধা াধাটি সমাধান করুন। প্রথেম যুিক্ত
ব্যাখ্যা করুন, তারপর উত্তর িদন:
প্রশ্ন: question

িবকল্পসমূহ: options

িনম্নিলিখত ধাপগুেলা অনুসরণ করুন: ১.
প্রশ্ন িবে�ষণ ২. প্রিতটি িবকল্প মূল্যায়ন ৩.
যুিক্তসঙ্গত িসদ্ধান্ত
JSON আকাের উত্তর িদন: {”যুিক্ত":
"<আপনার যুিক্ত এখােন>”, ”উত্তর”:
”<A/B/C/D>”}

”””””””””””””””””””””””””””””

Each model received this full text as a single user
message, preceded by a system instruction:

আপিন একটি বাংলা ধা াধা িবেশষজ্ঞ। সব�দা ধােপ
ধােপ িচন্তা করুন এবং JSON ফরম্যােট উত্তর
িদন।

Temperature was set to 0 when supported.

English Translated Prompt:

You are an expert in Bengali riddles. Be-
low are some example riddles with anal-
yses of their solutions.

Example 1: Question: A horse passes
over a clock—what time will the clock
show? Options: A. Seven o’clock
B. Twelve o’clock C. Nine o’clock D.
Three o’clock Reasoning: The clock’s
hands will break, so it will show twelve
o’clock.3 Answer: B

Example 2: Question: Which “car” does
not move? Options: A. Boat B. Bicycle
C. Cooker D. Car Reasoning: A cooker is
not a vehicle, so it cannot move. Answer:
C

Example 3: Question: “Tie the thread to
the tip of the nose, pull it with force, and
let it spin around the neck …” Options:
A. Mortar and pestle B. Spinning top C.
Hammer D. Machete Reasoning: The de-
scription matches the characteristics of a
spinning top. Answer: B

Now solve the following riddle. First ex-
plain your reasoning, then provide the
answer:

Question: question

Options: options

Follow these steps: 1. Analyze the ques-
tion 2. Evaluate each option 3. Make a
logical conclusion

Give the answer in JSON format: {”Rea-
soning”: ”<Your reasoning here>”, ”An-
swer”: ”<A/B/C/D>”}

3Bengali Idiom knowledge is required to understand. In
Bengali when it’s 12’0 clock for someone or something that
means the person or object is in ruins.
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The translated prompt contains few-shot exam-
ples with reasoning. However, we must mention
that, the translated prompts are given only for trans-
parency. A lot of linguistic and cultural essence of
these examples are lost in translation.

A.5.2 Reproducibility Notes
To reproduce the few-shot CoT results:

• Environment. Python 3.10+ with the
openai client library. Store API keys in
environment variables (OPENAI_API_KEY,
ANTHROPIC_API_KEY, NOVITA_API_KEY
etc.).

• Dataset. Use the released the curated JSON
subset of riddles identified as “hard but solv-
able’’ based on zero-shot accuracy.

• Execution. Run the provided script and edit
the settings list to specify provider, model
name, and rate-limit delays. The script auto-
matically saves JSON results with raw reason-
ing, extracted answers, and accuracy statistics.

• Outputs. Each run pro-
duces a timestamped file in
results/chain_of_thought_hard_cases
containing the full model reasoning text
and the parsed predictions, enabling direct
comparison with the zero-shot evaluation.

A.6 Trap Type Analysis
Trap Susceptibility and Reasoning Robustness.
Figure A1 reports model susceptibility to surface-
literal misdirection. Although such traps dominate
the dataset (358 of 435 riddles), the comparison
is still informative for understanding how models
handle superficial cues. Claude-Sonnet-4.0 shows
the highest vulnerability (47.6%), whereas GPT-5
and Claude-Opus remain lower at 18.7% and 18.4%
respectively.

Performance–Trap Relationship. As illustrated
in Figure A2, overall accuracy and surface-literal
susceptibility exhibit a strong negative correlation
(r = −0.89). Because the surface-literal category
is heavily over-represented, this association should
be viewed as exploratory rather than conclusive.
Nevertheless, the trend hints that models achieving
higher accuracy also develop more robust seman-
tic representations that help them resist superficial
distractors. We include these results to encourage
further, controlled analyses of the relationship be-
tween trap type and reasoning depth.
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Figure A1: Surface-literal trap susceptibility analysis showing model robustness to misdirection.
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Figure A2: Overall performance versus trap susceptibility, revealing strong negative correlation (r = −0.89).

73



A.7 LLM Assisted Riddle Annotation
This appendix provides comprehensive details of
our LLM-assisted annotation framework used to
label the BengaliFig dataset. The annotation pro-
cess involved two native Bengali speakers who veri-
fied and corrected LLM-generated candidate labels
across five orthogonal dimensions. We present the
complete annotation guidelines provided to human
annotators, followed by the exact prompt template
used with DeepSeek V3 to generate structured an-
notation suggestions.

A.7.1 Annotation Guidelines
The annotation guidilines provided to the anno-
tators are provided in original text followed by
English translation below:

Original Text: আপিন একটি বাংলা ধা াধা টীকাকরণ
প্রকেল্প অংশগ্রহণ করেছন। আপনার কাজ হেলা প্রদত্ত
ধা াধা-উত্তর �জাড়াগুিল িবে�ষণ কের পা াচটি িন�দ ষ্ট মাত্রায়
উপযুক্ত �লেবল প্রদান করা। প্রিতটি ধা াধার জন্য একটি
এআই িসে�ম প্রাথিমক টীকা সুপািরশ করেব যা আপিন
পয�ােলাচনা কের প্রেয়াজেন সংেশাধন করেবন। অনুগ্রহ
কের প্রিতটি ধা াধা সাবধােন পডু়ন, সাংসৃ্কিতক প্রসঙ্গ িবেবচনা
করুন এবং আপনার সেব�াত্তম িবচারবুিদ্ধ প্রেয়াগ করুন।

িনম্নিলিখত িনেদ� শাবলী অনুসরণ কের বাংলা ধা াধাগুিলর
টীকা প্রদান করুন। প্রিতটি ধা াধা পা াচটি মাত্রায় �লেবল করেত
হেব:

১. যুি�র ধরন (Reasoning Type):

• রূপক (metaphorical): প্রতীকী বা রূপক
উপস্থাপনা

• সাধারণ জ্ঞান (commonsense): �দনি�ন জ্ঞান
এবং �যৌিক্তক অনুমান

• বণ�নামূলক (descriptive): রূপক ছাড়াই আক্ষিরক
�বিশষ্ট্য

• শব্দেখলা (wordplay): ধ্বিন প্যাটান�, ভাষাগত
�বিশষ্ট্য

• �যৌি�ক অনুমান (logical_deduction): সূত্র
�থেক ধােপ ধােপ যুিক্ত

• �যৌিগক (compound): একািধক যুিক্তর ধরন
একসােথ

২. উত্তেরর ধরন (Answer Type):

• স্থান (place): অবস্থান (আসাম, ঢাকা, বাংলােদশ)
• ব্যি� (person): মানুষ, ভূিমকা (মা, িশক্ষক, রাজা)
• প্রাণী (animal): উি�দ ব্যতীত জীিবত প্রাণী (গরু,

পািখ, মাছ)

• উি�দ (plant): উি�দজগৎ (আম, ধান, ফুল)

• বস্তু (object): মানবসৃষ্ট িজিনস (কলম, �চয়ার, বই)

• প্রাকৃিতক ঘটনা (natural_phenomenon):
প্রকৃিতর ঘটনা (বৃষ্টি, �রাদ, আগুন)

• শরীেরর অংশ (body_part): শারীিরক অঙ্গ (�চাখ,
হাত, মুখ)

• খাদ্য/পানীয় (food_drink): �ভাজ্য পদাথ� (ভাত,
পািন, িমষ্টি)

• ধারণা (concept): িবমূত� ভাব (ভােলাবাসা, সময়,
স্বপ্ন)

• সংখ্যা (quantity): সংখ্যা, পিরমাপ (িতন, শত,
মাইল)

• �টক্সট/প্রতীক (text_symbol): িলিখত উপাদান
(অ, নাম, িচিঠ)

৩. কিঠনতা (Difficulty):

• সহজ (easy): সরাসির সংেযাগ, সাধারণ জ্ঞান

• মাঝাির (medium): মাঝাির িচন্তা, িকছু সাংসৃ্কিতক
জ্ঞান

• কিঠন (hard): জটিল রূপক, গভীর সাংসৃ্কিতক
অন্তদৃ� ষ্টি

• িবেশষজ্ঞ (expert): অত্যন্ত িবমূত� , িবেশষািয়ত জ্ঞান
প্রেয়াজন

৪. ফা ােদর ধরন (Trap Type):

• আক্ষিরক িবভ্রম (surface_literal): আক্ষিরক
ব্যাখ্যা িবভ্রািন্তকর

• একািধক �বধ (multiple_valid): �বশ িকছু
যুিক্তসঙ্গত উত্তর

• সাংসৃ্কিতক িন�দ ষ্ট (culturally_specific): বাঙািল
সাংসৃ্কিতক জ্ঞান প্রেয়াজন

• ভাষাগত �কৌশল (linguistic_trick):
ধ্বিন/শব্দাংেশর প্যাটান� গুরুত্বপূণ�

• িদক ভ্রষ্টতা (misdirection): ভুল ইিঙ্গত

• প্রাচীন উে�খ (archaic_reference): পুরাতন
বাংলা শব্দ/উে�খ

• �নই (none): �কােনা উে�খেযাগ্য ফা াদ �নই
৫. সাংসৃ্কিতক গভীরতা (Cultural Depth):

• সাব�জনীন (universal): সাধারণ মানিবক জ্ঞানই
যেথষ্ট
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• সাংসৃ্কিতক িন�দ ষ্ট (cultural_specific): বাংলা
ভাষা জ্ঞান বা সাংসৃ্কিতক প্রসঙ্গ অপিরহায�

গুরুত্বপূণ� িবষয়:
• বাংলা পাঠ্য সাবধােন পডু়ন, সাংসৃ্কিতক প্রসঙ্গ িবেবচনা

করুন

• উত্তেরর ধরেনর জন্য: সবেচেয় িন�দ ষ্ট ��ণী ব্যবহার
করুন (স্থােনর নাম = "স্থান", "বস্তু" নয়)

• সাধারণ বাঙািল বক্তার দৃষ্টিেকাণ �থেক কিঠনতা
মূল্যায়ন করুন

English Translation:
You are participating in a Bengali riddle annota-

tion project. Your task is to analyze the given riddle-
answer pairs and provide appropriate labels across
five specific dimensions. For each riddle, an AI sys-
tem will suggest preliminary annotations which you
will review and correct as necessary. Please read
each riddle carefully, consider the cultural context,
and apply your best judgment.

Follow the guidelines below to annotate Bengali
riddles. Each riddle must be labeled across five
dimensions:

1. Reasoning Type:

• metaphorical: Symbolic or figurative repre-
sentation

• commonsense: Everyday knowledge and log-
ical inference

• descriptive: Literal characteristics without
metaphors

• wordplay: Sound patterns, linguistic features

• logical_deduction: Step-by-step reasoning
from clues

• compound: Multiple reasoning types com-
bined

2. Answer Type:

• place: Locations (Assam, Dhaka,
Bangladesh)

• person: People, roles (mother, teacher, king)

• animal: Living creatures except plants (cow,
bird, fish)

• plant: Vegetation (mango, rice, flower)

• object: Man-made items (pen, chair, book)

• natural_phenomenon: Nature events (rain,
sun, fire)

• body_part: Anatomy (eye, hand, mouth)

• food_drink: Consumables (rice, water,
sweets)

• concept: Abstract ideas (love, time, dream)

• quantity: Numbers, measurements (three,
hundred, mile)

• text_symbol: Written elements (letter, name,
letter)

3. Difficulty:

• easy: Straightforward connections, common
knowledge

• medium: Moderate thinking, some cultural
knowledge

• hard: Complex metaphors, deeper cultural
insight

• expert: Highly abstract, specialized knowl-
edge needed

4. Trap Type:

• surface_literal: Literal interpretation mis-
leads

• multiple_valid: Several plausible answers

• culturally_specific: Needs Bengali cultural
knowledge

• linguistic_trick: Sound/syllable patterns mat-
ter

• misdirection: Red herring clues

• archaic_reference: Old Bengali terms/refer-
ences

• none: No significant traps

5. Cultural Depth:

• universal: General human knowledge suffi-
cient

• cultural_specific: Bengali language knowl-
edge or cultural context essential

75



Key Points:

• Read Bengali text carefully, consider cultural
context

• For answer type: Use most specific category
(place names = ”place”, not ”object”)

• Assess difficulty from typical Bengali speaker
perspective

Illustrative Examples Representative annota-
tions appear in Table A3. For instance, the rid-
dle "িকভােব কা াচা িডম �ফেল কংি�েটর ��ার ভাঙা যায়,
িডম না �ভেঙ?" is labeled (r,t,a,c,d)=(commonsense,
surface-literal, concept, universal, easy).

A.7.2 LLM Annotation Prompt
The following prompt was used with DeepSeek V3
to generate candidate annotations for Bengali rid-
dles. The LLM receives a riddle-answer pair along
with heuristic priors and outputs structured JSON
annotations that are subsequently verified by human
annotators.

PROMPT:
”””””””””””””””””””””””””””””””

You are a Bengali riddle expert.
Annotate this Bengali riddle with 5
labels. Focus on the core cognitive
and cultural aspects.

RIDDLE: িতন অক্ষেরর এমন �দশ �পট কাটেল খাই �য
�বশ।
ANSWER: আসাম
ANNOTATION SCHEMA:

1. REASONING_TYPE - Primary thinking
required:

• metaphorical: Symbolic/figurative
representation

• commonsense: Everyday knowledge +
logical inference

• descriptive: Literal
characteristics without metaphors

• wordplay: Sound patterns,
linguistic features

• logical_deduction: Step-by-step
reasoning from clues

• compound: Multiple reasoning types
combined

2. ANSWER_TYPE - What the answer
represents:

• place: Locations (আসাম, ঢাকা,
বাংলােদশ)

• person: People, roles (মা, িশক্ষক,
রাজা)

• animal: Living creatures except
plants (গরু, পািখ, মাছ)

• plant: Vegetation (আম, ধান, ফুল)
• object: Man-made items (কলম, �চয়ার,

বই)
• natural_phenomenon: Nature events

(বৃষ্টি, �রাদ, আগুন)
• body_part: Anatomy (�চাখ, হাত, মুখ)
• food_drink: Consumables (ভাত, পািন,

িমষ্টি)

• concept: Abstract ideas (ভােলাবাসা,
সময়, স্বপ্ন)

• quantity: Numbers, measurements
(িতন, শত, মাইল)

• text_symbol: Written elements (অ,
নাম, িচিঠ)

3. DIFFICULTY - Cognitive challenge:

• easy: Straightforward connections,
common knowledge

• medium: Moderate thinking, some
cultural knowledge

• hard: Complex metaphors, deeper
cultural insight

• expert: Highly abstract,
specialized knowledge needed

4. TRAP_TYPE - Main misleading element:

• surface_literal: Literal
interpretation misleads

• multiple_valid: Several plausible
answers

• culturally_specific: Needs Bengali
cultural knowledge

• linguistic_trick: Sound/syllable
patterns matter

• misdirection: Red herring clues

• archaic_reference: Old Bengali
terms/references

• none: No significant traps

5. CULTURAL_DEPTH - Cultural knowledge
required:

• universal: General human knowledge
sufficient

• cultural_specific: Bengali
language knowledge or cultural
context essential

SUGGESTED VALUES (verify and adjust):
- answer_type: place

KEY POINTS:

- Read Bengali text carefully,
consider cultural context

- For answer_type: Use most specific
category (place names = "place",
not "object")

- Assess difficulty from typical
Bengali speaker perspective

Output JSON only:
`฀`json
{
"reasoning_type": "...",
"answer_type": "...",
"difficulty": "...",
"trap_type": "...",
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Riddle (truncated) Answer r a t c

কা াচা িডম �ফেল কংি�ট... �কানভােবই না commonsense concept surface-literal universal
শুইেত �গেল িদেত হয়... দরজার িখল compound object culturally-specific cultural-specific
সােহব �কাট� প্যান্ট পের... �পায়াজ metaphorical food_drink surface-literal cultural-specific
১০ জন মানুষ ১০ ঘন্টায়... �কান সময়ই না logical_deduction concept surface-literal universal
একটা ঘিড়র উপর িদেয়... বােরাটা wordplay quantity surface-literal cultural-specific

Table A3: Sample riddles with final gold annotations (r, a, t, c).

"cultural_depth": "...",
"source": "web"
}
`฀`

”””””””””””””””””””””””””””””””

We provide here a complete prompt as to how it
would be with an example input question-answer
pair embedded into it, rather than leaving it as an
empty placeholder for transparency and illustrative
purpose. The translation and gold annotation after
human evaluation is given below:
Translation Note: The riddle "িতন অক্ষেরর এমন
�দশ �পট কাটেল খাই �য �বশ।'' translates to ”A three-
letter country, when you cut its belly, you eat quite
well.” The answer "আসাম" (Assam) is a wordplay
where cutting the middle letter "সা'' from "আসাম''
gives "আম'' (mango), which is eaten. Please note
that, Bengali graphemes are compound and repre-
sents syllables.
Gold Standard Annotations: For the example rid-
dle, the LLM suggested the following annotations
which were then verified and modified by human
annotators:

• reasoning_type: wordplay

• answer_type: place

• difficulty: medium

• trap_type: surface_literal

• cultural_depth: cultural_specific
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Abstract
Speech recognition models often struggle in
specialized domains due to the lack of domain-
specific paired audio-text data, making it diffi-
cult to adapt general-purpose systems to unique
terminology and linguistic patterns. In this
work, we propose a text-only domain adapta-
tion method for Whisper, fine-tuning only the
decoder using domain-relevant text. Our ap-
proach introduces trainable cross-attention bias
embeddings, extended with a gated mixture-
of-experts routing mechanism, enabling the
model to encode domain-specific linguistic
priors without any audio data. Unlike ASR
adaptation methods that require paired audio-
text datasets, our approach is lightweight and
resource-efficient. We observe up to a 56%
relative improvement in word error rate over
the baseline. Our findings demonstrate that
text-only adaptation is a practical and effective
strategy for improving speech recognition in
specialized domains with limited or no domain-
specific audio.

1 Introduction

Speech recognition technology has advanced sig-
nificantly in recent years, with applications in vir-
tual assistants, transcription services, and real-
time communication systems. These improve-
ments have been driven by supervised learning
approaches that rely on paired audio-text datasets
to train models capable of mapping language to
text Watanabe et al. (2017). Such datasets en-
able models to learn the complex relationships be-
tween speech signals and their textual represen-
tations, resulting in robust general-purpose Auto-
matic Speech Recognition (ASR) systems. How-
ever, achieving high accuracy in specialized do-
mains remains challenging. Domain-specific ASR
systems must address unique linguistic patterns,
specialized terminology, and the limited availabil-
ity of paired audio-text data Bataev et al. (2023).
In domains such as healthcare, legal, or scientific

research, the limited availability of annotated do-
main audio constrains the adaptation of general-
purpose models, highlighting the need for ap-
proaches that reduce reliance on domain-specific
audio resources.

To address these challenges, researchers have in-
vestigated integrating ASR systems with language
models (LMs) through shallow and deep fusion
Gulcehre et al. (2015), as well as generating syn-
thetic domain audio using text-to-speech (TTS)
systems Huang et al. (2020). Shallow fusion can
improve recognition accuracy but requires an ex-
ternal LM during inference, which increases com-
putational cost and latency. Deep fusion incorpo-
rates the LM within the ASR training process, but
this often demands substantial computational re-
sources and careful tuning to prevent overfitting.
TTS-based augmentation provides a way to create
domain-specific audio from text, yet the generated
speech may contain artifacts and fail to replicate the
prosody and acoustic variability of natural speech,
limiting its effectiveness for adaptation.

In this work, we propose a text-only domain
adaptation method for Whisper, fine-tuning only
the decoder using domain-relevant textual corpora.
Our approach introduces trainable cross-attention
bias embeddings, extended with a gated mixture-
of-experts routing mechanism, enabling the model
to encode domain-specific linguistic priors without
any audio data. This eliminates the dependence on
paired domain audio while offering a lightweight
and resource-efficient adaptation strategy. We ob-
serve up to a 56% relative reduction in word error
rate compared to the baseline. These results demon-
strate that text-only fine-tuning is a practical and
effective approach for improving ASR performance
in specialized domains.

The remainder of this paper is organized as fol-
lows: Section 2 discusses related work, Section 3
presents the proposed approach, Section 4 details
the evaluation and results, and Section 5 concludes
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the paper.

2 Related Work

Traditional ASR systems rely heavily on hand-
crafted features and statistical models, involv-
ing multiple stages such as acoustic modeling,
phoneme recognition, and language modeling Bell
et al. (2020). Recent advances in deep learning, par-
ticularly Transformer-based architectures Vaswani
(2017), have enabled end-to-end models that map
audio directly to text, simplifying the pipeline and
achieving state-of-the-art performance. However,
adapting these models to new domains remains
challenging due to the need for large amounts of
labeled audio data, motivating research into more
efficient domain adaptation techniques Bell et al.
(2020).

A common strategy for domain adaptation is
to use text-to-speech (TTS) to synthesize paired
speech-text data from target-domain text for fine-
tuning ASR models Huang et al. (2020). While
effective, this process requires training high-quality
multi-speaker TTS models, which is computation-
ally expensive Zheng et al. (2021). To reduce this
cost, text-to-spectrogram approaches generate syn-
thetic spectrograms directly from text, removing
the need for TTS and audio storage while minimiz-
ing the mismatch between synthetic and real audio
Bataev et al. (2023). This approach still requires
careful training of the spectrogram generator to
ensure quality.

Text-only adaptation methods offer a more cost-
efficient alternative. These include fine-tuning
external language models on target-domain text
and integrating them into ASR decoding via shal-
low fusion Kannan et al. (2018). Contextual bi-
asing methods embed domain-specific phrases to
improve recognition of rare terms Aleksic et al.
(2015); Chang et al. (2023), while prompt-based
techniques condition the ASR model on additional
domain cues to guide transcription Suh et al. (2024).
Another approach uses pseudo-audio embeddings
as prompts for fine-tuning Ma et al. (2024), al-
lowing adaptation without paired data. Tran et al.
Tran et al. (2025) propose DAS, a domain adap-
tation framework that generates domain-specific
synthetic speech from LLM-produced text and fine-
tunes Whisper with LoRA adapters.

Our approach adapts the ASR model to new
domains using text-only fine-tuning, without re-
lying on synthetic audio generation, prompt-based

conditioning, or external rescoring. This design
reduces computational cost, lowers latency, and
simplifies deployment, while enhancing recogni-
tion of domain-specific vocabulary. Our method
directly adapts the model’s language understanding
capabilities using only textual data, making it prac-
tical for scenarios where domain audio is limited
or unavailable.

3 Approach

Our approach builds on Whisper, a state-of-the-art
ASR model developed by OpenAI Radford et al.
(2023). Whisper employs a Transformer-based
encoder-decoder architecture, where the encoder
processes audio inputs into latent representations,
and the decoder generates transcriptions by attend-
ing to both the encoder’s output and prior textual
context. The encoder captures acoustic features
such as phonemes, pitch, and rhythm, while the de-
coder aligns these features with linguistic patterns
to produce accurate transcriptions. Whisper’s de-
coder accepts input sequences, enabling the model
to incorporate textual descriptions or prompts as
part of the input. This feature allows Whisper to
condition its transcription generation on additional
context, such as domain-specific instructions or
metadata. We leverage this capability for domain
adaptation by modifying the architecture to focus
only on the decoder, bypassing the encoder. This
enables adaptation using text-only data without re-
quiring paired audio-text inputs.

The encoder in Whisper generates contextual-
ized representations of the input audio, which are
passed to the decoder for processing via the cross-
attention mechanism. During cross-attention, the
decoder queries the encoder outputs using keys
(K) and values (V ), where K represents the con-
textualized embeddings generated by the encoder,
and V serves as the basis for computing attention-
weighted outputs that guide the decoder’s predic-
tions. We freeze the encoder during training, but
the decoder still requires valid K and V representa-
tions for the cross-attention mechanism to function
correctly, even though the encoder’s outputs are
no longer updated. To address this, we replace the
encoder’s output in the cross-attention mechanism
with trainable biases B. The bias embeddings B
denoted as RN×d, where N is the bias sequence
length (representing the number of tokens) and d is
the embedding dimension, which matches the out-
put dimension of the frozen encoder. These biases
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Figure 1: Figure (a) shows the Whisper-base encoder-decoder architecture. Figure (b) shows the modified architec-
ture with domain-specific bias adapters for text-only adaptation (our approach), where multiple expert bias matrices
are introduced into the decoder to incorporate domain-specific linguistic priors and guide transcription without
using paired audio.

serve as trainable substitutes for the encoder’s rep-
resentations, allowing the decoder to focus entirely
on linguistic patterns while maintaining structural
compatibility with the original architecture Suh
et al. (2024).

We compute cross-attention as:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (1)

We replace the encoder outputs with the bias
embeddings as K and V in the decoder’s cross-
attention layers. Substituting K and V with B, the
cross-attention becomes:

Cross-Attention = Attention(Q,B,B) (2)

To further refine the contribution of bias embed-
dings, we introduce a tanh gating mechanism:

G = tanh(Wg ·B) (3)

where Wg represents a learnable weight matrix
that modulates bias embeddings.

We initialize the bias embeddings B using
precomputed representations from the pretrained
Whisper encoder.

B = Epretrained (4)

where Epretrained represents the fixed output of
the pretrained Whisper encoder. These bias embed-
dings are then made trainable during fine-tuning, al-
lowing the model to adapt them for domain-specific
text representations. This initialization ensures
that the model starts with relevant embeddings
while retaining the flexibility to refine them through
backpropagation. The trainable biases introduced
into the cross-attention layers implicitly capture
domain-relevant features during training, allowing
the decoder to operate effectively in a text-only
setting.

Gated Routing for Multi-Domain Adaptation:
To handle multiple domain subspaces, we extend
the bias embedding design into a mixture-of-experts
(MoE) framework. Instead of a single bias matrix
B, we maintain a set of M expert bias matrices
{Bm}Mm=1, each representing domain-specific lin-
guistic priors. A lightweight routing network com-
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putes mixture weights π ∈ RM conditioned on the
current decoding context:

π = softmax(Wr, φ(y<t)), (5)

where φ(y<t) encodes the partial transcription his-
tory and Wr is a learnable projection. The aggre-
gated bias is then:

B∗ =
M∑

m=1

πm,Bm. (6)

This B∗ replaces B in the cross-attention mecha-
nism, enabling the decoder to dynamically route
attention toward the most relevant domain priors.
This structure not only improves adaptation to di-
verse subdomains but also retains efficiency, as only
the small bias matrices and routing parameters are
updated during training.

During inference, real audio input is available,
and the encoder is reintroduced to generate con-
textual representations. However, the decoder is
trained with bias embeddings, creating a potential
mismatch between the learned adaptation and the
actual encoder output. To ensure a smooth transi-
tion while preserving domain-specific knowledge,
we integrate the learned biases with the encoder’s
output through a linear interpolation.

Given the encoder-generated key and value
matrices during inference, we modify the cross-
attention mechanism as follows:

K ′ = αK+(1−α)B∗, V ′ = αV +(1−α)B∗

(7)
where K, V are the encoder’s outputs derived

from the audio input, B∗ is the aggregated bias
embedding from the routing network, and α is a
weight that balances the contribution of the encoder
and bias embeddings.

The interpolation ensures that the decoder re-
ceives both domain-specific cues (from B) and ac-
tual acoustic representations (from K, V ). We
consider the value of α as 0.5.

Loss Function: To improve Whisper’s perfor-
mance on domain-specific transcription tasks, we
explore alternative loss functions beyond standard
cross-entropy. Specifically, we incorporate two loss
functions:

1. Kullback-Leibler (KL) Divergence: This
loss function measures the divergence be-
tween two probability distributions, guiding

the model towards a better approximation of
the true transcription distribution. Minimiz-
ing this divergence improves the fluency and
accuracy of generated transcriptions.

2. Bregman Divergence-Inspired Loss: This
loss function prioritizes correct predictions of
domain-specific terms (e.g., technical jargon,
medical terminology) by assigning higher
penalties to errors involving critical domain-
specific words.

The combined loss function as

Ltotal = LCE + λKL · KL(Ptrue||Ppred)

+ λBD ·
n∑

i=1

δi · I(wi ∈ D) (8)

where KL(Ptrue||Ppred) is the Kullback-Leibler
Divergence between the true transcription distribu-
tion Ptrue and the predicted transcription distribu-
tion Ppred, λKL is a hyperparameter that controls the
weight of the KL divergence term, δi is a penalty
factor for incorrect predictions of domain-specific
words, I(wi ∈ D) is an indicator function that is
1 if the word wi belongs to the domain-specific
vocabulary D, and 0 otherwise, and λBD is a hy-
perparameter controlling the weight of the Breg-
man Divergence-Inspired loss term. In this work,
we construct the domain-specific vocabulary D us-
ing public data sources and private data, including
domain-specific reports.

4 Evaluation and Results

We utilize the Whisper-base English model as the
foundation for domain-specific adaptation in our
experiments. The domain-specific text data is nor-
malized and tokenized to ensure compatibility with
the Whisper tokenizer. We measure performance
using Word Error Rate (WER) against the baseline
to assess the effectiveness of text-only fine-tuning
in improving recognition accuracy in specialized
domains.

4.1 Dataset
We evaluate the model on three domain-specific
datasets:

Earnings Call: The dataset contains quarterly
earnings conference calls from S&P 500 compa-
nies in 2017 Qin and Yang (2019). It includes
domain-specific financial discussions from corpo-
rate meetings. For text-only fine-tuning, we use
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Table 1: Performance of our model with existing baselines

Methods Earnings Call OCW2 MedReport
Whisper-base Radford et al. (2022) 32.9 33.5 32
Context Pertubation Suh et al. (2024) 15.15 9.79 NA
Ours 14.24 17.4 18

11,736 text files for training and 1,678 audio files
for testing, with total audio durations of approxi-
mately 30 hours and 5 hours, respectively.

OCW2: The OCW2 dataset from MIT Open-
CourseWare covers a range of academic lectures
Suh et al. (2024). It contains 24,123 text files for
training and 3,447 audio files for testing, corre-
sponding to approximately 40 and 10 hours of au-
dio, respectively.

MedReport: The medical domain often lacks
large paired audio-text datasets, but has abundant
domain-specific text. We curate a set of medi-
cal sentences, including drug and medicine names,
from pharmaceutical company annual reports and
industry publications. This dataset contains 4,000
text files for training and 1,000 audio files for test-
ing, with total audio durations of approximately 10
and 3 hours, respectively.

4.2 Experimental Setup
Training is conducted on an NVIDIA Tesla V100
GPU for a maximum of 1,000 steps, with 200
warmup steps to gradually increase the learning
rate. Data loading uses 16 workers, and evaluation
is performed every 50 steps. Logging occurs every
10 steps, and model checkpoints are saved every
50 steps. Intermediate evaluations are skipped to
accelerate training iterations.

4.3 Results and Discussion
We evaluate our approach using Whisper-base as
the base model and compare it with two baselines.
The first is the pre-trained Whisper-base model
Radford et al. (2022). The second is a domain-
adapted ASR model trained on paired audio-text
data and prompted with LLM-generated descrip-
tions combined with context perturbation Suh et al.
(2024).

Model performance is measured using WER. Ta-
ble 1 presents the overall results, showing that our
model achieves notable improvements over both
baselines. These gains confirm that text-only fine-
tuning enhances recognition accuracy in special-
ized domains. Table 2 provides example transcrip-
tions for the Earnings Call, OCW2, and MedReport

datasets, comparing Whisper-base and our adapted
model. After fine-tuning, our model more accu-
rately recognizes domain-specific vocabulary, lead-
ing to better transcription quality. In the exam-
ples, bold text denotes correct outputs matching the
ground truth (previously misclassified by Whisper-
base), while underlined text indicates incorrect out-
puts that differ from the ground truth.

Earnings Call: Table 2 compares transcriptions
among the ground truth, Whisper-base, and our pro-
posed model (“Ours") for the Earnings Call dataset.
In the first example, Whisper-base misinterprets “in
fact" as “affect" and “net interest expense" as “that
interest expense" while also transcribing “debt"
as “dad." The proposed model restores these key
financial terms correctly. In the second example,
Whisper-base introduces disfluencies such as “you
know," misrecognizes “build" as “bill" and distorts
“UK" into “u.k.a." In the third example, Whisper-
base produces an entirely altered phrase, “many
ways when I’m very much focused" deviating sig-
nificantly from the ground truth, whereas the pro-
posed model correctly outputs “we’re now" pre-
serving the intended meaning.

As shown in Table 1, the context perturba-
tion approach improves accuracy, reducing WER
to 15.15 on the Earnings Call dataset compared
with Whisper-base’s 32.9. The proposed method
achieves the best performance, lowering WER fur-
ther to 14.24, corresponding to a 19% relative re-
duction over Whisper-base and a 0.9% reduction
compared with the context perturbation approach.

OCW2: Table 2 shows that, for the OCW2
dataset, our model correctly retains technical terms
such as “fetch and decode" instead of Whisper-
base’s “FETCH-ND code" and produces grammati-
cally accurate phrases such as “generator is going
to burn out" instead of “generators gonna burn out".
For complex scientific content, the proposed model
maintains coherence better than Whisper-base, al-
though minor errors persist, such as “phalmus" for
“thalamus" (an improvement over Whisper-base’s
“phalm") and the introduction of “cells that goes"
instead of “cells that go".
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Table 2: Comparison of the transcription output obtained from Whisper-base and Ours with the ground truth. Bold
text represents responses that are correct according to the ground truth, but were misclassified by the Whisper-base
model. Incorrect responses are underlined.

Ground Truth Whisper-base Ours

Earnings Call
most of that in fact almost
all of that was net interest ex-
pense on our automotive debt

most of that affect almost all
of that was that interest ex-
pense on our automotive dad

most of that, in fact almost
all of that, was net interest
expense on our automotive
debt.

no question about it because
customers were trying to de-
cide do they want to build
their next datacenter in the
uk or should they be build-
ing that datacenter someplace
else in europe

no question about it because
customers were trying to de-
cide that they want to you
know bill that next data cen-
ter in the u.k.a. or should they
be building that data center
someplace else in europe

no question about it because
customers were trying to de-
cide that they want to build
that next data center in the
UK or should they be build-
ing that data center someplace
else in Europe.

we’re now very much focused
on operating effectively in a
warehouse delivered model
which we think we can do
because we do it across our
other businesses

many ways when I’m very
much focused on operating ef-
fectively in a warehouse de-
livered model which we think
we can do because we do it
across our other businesses.

we’re now very much fo-
cused on operating effec-
tively in a warehouse deliv-
ered model which we think
we can do because we do it
across our other businesses.

OCW2
generator is going to burn out
in let’s say 10 or 20 years

generators gonna burn out in
let’s say 10 or 20 years.

generator is going to burn out
in let’s say 10 or 20 years.

and the fetch and decode
stages implement optimiza-
tions

and the FETCH-ND code
stages implement optimiza-
tions

and the FETCH and Decode
stages implement optimiza-
tions

it’s the ventral the posterior
part of the ventral nucleus the
thalamus. and that’s where
we find the cells that goes to
the neocortex as i show there

It’s the ventral posterior part
of the ventral nucleus of the
phalm. And that’s where we
find the cells that go to the
neocortex as I show there.

It’s the ventral posterior part
of the ventral nucleus of the
phalmus. And that’s where
we find the cells that goes to
the neocortex as I show there.

MedReport
Paracetamol is one of the
most commonly used medica-
tions for pain relief and fever
reduction.

Parasetimal is one of the most
commonly used medications
for pain relief and fever reduc-
tion.

Paracetamol is one of the
most commonly used medica-
tions for pain relief and fever
reduction.

Azee is a commonly pre-
scribed antibiotic to treat bac-
terial infections. It contains
azithromycin, which is effec-
tive against respiratory and
skin infections.

A Z is a commonly pre-
scribed antibiotic to treat bac-
terial infections. It contains
azithromycin, which is effec-
tive against respiratory and
skin infections.

Azee is a commonly pre-
scribed antibiotic to treat bac-
terial infections. It contains
azithromycin, which is effec-
tive against respiratory and
skin infections.

Broncol is a bronchodilator
that helps manage respira-
tory conditions like asthma.
Cipla’s broncol is effective
in relieving broncospasm and
improving breathing.

Bronkel is a bronco dilator
that helps manage respira-
tory conditions like asthma.
Sipla’s bronkel is effective in
relieving bronchospasm and
improving breathing.

Broncal is a bronchodilator
that helps manage respira-
tory conditions like asthma.
Cipla’s broncal is effective
in relieving broncospasm and
improving breathing.

As reported in Table 1, Whisper-base has a
high WER of 33.5. The context perturbation
method achieves the lowest WER of 9.79, reflect-
ing strong adaptation when trained with audio data
and domain-specific prompts. Our method achieves
a WER of 17.4, representing a 16% relative reduc-

tion compared to Whisper-base, but not matching
the performance of context perturbation due to its
reliance on text-only fine-tuning.

The relatively higher WER on the OCW2 dataset
arises from the nature of our text-only adaptation
strategy. Unlike the context perturbation method,
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which leverages paired audio–text data and domain
audio cues to align acoustic and lexical variations,
our approach operates purely on text, without ex-
posure to acoustic or prosodic features present in
lecture recordings. OCW2 includes substantial vari-
ability in speaker style, pacing, and background
conditions, which purely textual fine-tuning cannot
capture. Despite this limitation, our model achieves
consistent improvements over the base Whisper
model, demonstrating that linguistic adaptation
alone can transfer domain knowledge effectively
even in acoustically complex settings. Future exten-
sions could integrate lightweight audio-conditioned
adapters or multi-modal alignment losses to further
close this gap.

MedReport: For the MedReport dataset, our
model shows substantial improvements in recogniz-
ing medical terminology. It accurately transcribes
“Paracetamol" instead of “Parasetimal" and “Azee"
instead of “A Z" which are critical distinctions in
medical transcription. Some errors remain, such
as “Broncol" being transcribed as “Broncal" but
these are less severe than Whisper-base’s phonetic
distortions. For example, in a case where “Bron-
col" appears with additional context about Cipla’s
product, the proposed model correctly restores the
term. As shown in Table 1, WER improves from
32% to 18% after fine-tuning, corresponding to a
14% relative reduction over Whisper-base.

Across domains, Whisper-base shows frequent
structural inconsistencies and misrecognitions that
distort meaning. Our model, which relies solely
on text-based domain adaptation, produces more
accurate and readable domain-specific transcrip-
tions but occasionally hallucinates, especially on
short audio segments where insufficient context
leads to completions based on statistical likelihood
rather than actual input. For example, in OCW2,

“and you can restore this activity. you have a ques-
tion the intermediate stuff where it’s reduced but
not yet denatured how do you” was transcribed as

“and you can restore this activity. Do you have a
question? Yes, so in the intermediate stuff where
it’s reduced, but not yet, do you make sure how to
use it?”. Similarly, in Earnings Call, “the amer-
icas were up in midsingle digits with strength in
the united states” became “America’s Rop in mid-
single digits for strengthening audit states.”. These
errors are rare in Earnings Call and mostly sub-
stitutions, while OCW2 shows added explanatory
phrases. We mitigate hallucinations by appending
silence to short segments and applying prompt con-

straints, improving consistency without requiring
audio-text alignment. Overall, the improvements
over Whisper-base demonstrate that text-only adap-
tation can achieve strong domain-specific perfor-
mance while keeping computational costs low.

5 Conclusion

In this work, we present a text-only adaptation
method for domain-specific speech recognition by
fine-tuning the decoder of the Whisper model. The
encoder’s output is replaced with trainable biases,
allowing the model to capture domain-specific lin-
guistic patterns without requiring paired audio-text
data. The proposed method shows substantial im-
provements in transcription accuracy, particularly
for specialized vocabularies, while maintaining
computational efficiency. This demonstrates the
practicality of our approach for domain adapta-
tion in settings with limited audio resources. Fu-
ture work explores integrating fine-tuned small lan-
guage models (SLMs) with additional modalities,
such as video, to further enhance domain-specific
recognition performance.

References
Petar S Aleksic, Mohammadreza Ghodsi, Assaf Hurwitz

Michaely, Cyril Allauzen, Keith B Hall, Brian Roark,
David Rybach, and Pedro J Moreno. 2015. Bringing
contextual information to google speech recognition.
In Interspeech, pages 468–472.

Vladimir Bataev, Roman Korostik, Evgeny Shabalin,
Vitaly Lavrukhin, and Boris Ginsburg. 2023. Text-
only domain adaptation for end-to-end asr using in-
tegrated text-to-mel-spectrogram generator. arXiv
preprint arXiv:2302.14036.

Peter Bell, Joachim Fainberg, Ondrej Klejch, Jinyu Li,
Steve Renals, and Pawel Swietojanski. 2020. Adap-
tation algorithms for neural network-based speech
recognition: An overview. IEEE Open Journal of
Signal Processing, 2:33–66.

Shuo-Yiin Chang, Chao Zhang, Tara N Sainath, Bo Li,
and Trevor Strohman. 2023. Context-aware end-to-
end asr using self-attentive embedding and tensor
fusion. In ICASSP 2023-2023 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 1–5. IEEE.

Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun
Cho, Loic Barrault, Huei-Chi Lin, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2015. On
using monolingual corpora in neural machine trans-
lation. arXiv preprint arXiv:1503.03535.

Yan Huang, Jinyu Li, Lei He, Wenning Wei, William
Gale, and Yifan Gong. 2020. Rapid rnn-t adaptation

84



using personalized speech synthesis and neural lan-
guage generator. In Interspeech, pages 1256–1260.

Anjuli Kannan, Yonghui Wu, Patrick Nguyen, Tara N
Sainath, Zhijeng Chen, and Rohit Prabhavalkar. 2018.
An analysis of incorporating an external language
model into a sequence-to-sequence model. In 2018
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 1–5828.
IEEE.

Yingyi Ma, Zhe Liu, and Ozlem Kalinli. 2024. Effec-
tive text adaptation for llm-based asr through soft
prompt fine-tuning. In 2024 IEEE Spoken Language
Technology Workshop (SLT), pages 64–69. IEEE.

Yu Qin and Yi Yang. 2019. What you say and how
you say it matters: Predicting stock volatility using
verbal and vocal cues. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 390–401.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2022.
Robust speech recognition via large-scale weak su-
pervision. arXiv preprint.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2023.
Robust speech recognition via large-scale weak su-
pervision. In International conference on machine
learning, pages 28492–28518. PMLR.

Jiwon Suh, Injae Na, and Woohwan Jung. 2024. Improv-
ing domain-specific asr with llm-generated contex-
tual descriptions. arXiv preprint arXiv:2407.17874.

Minh Tran, Yutong Pang, Debjyoti Paul, Laxmi Pandey,
Kevin Jiang, Jinxi Guo, Ke Li, Shun Zhang, Xuedong
Zhang, and Xin Lei. 2025. A domain adaptation
framework for speech recognition systems with only
synthetic data. In ICASSP 2025-2025 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 1–5. IEEE.

A Vaswani. 2017. Attention is all you need. Advances
in Neural Information Processing Systems.

Shinji Watanabe, Takaaki Hori, Suyoun Kim, John R
Hershey, and Tomoki Hayashi. 2017. Hybrid
ctc/attention architecture for end-to-end speech recog-
nition. IEEE Journal of Selected Topics in Signal
Processing, 11(8):1240–1253.

Xianrui Zheng, Yulan Liu, Deniz Gunceler, and Daniel
Willett. 2021. Using synthetic audio to improve the
recognition of out-of-vocabulary words in end-to-end
asr systems. In ICASSP 2021-2021 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5674–5678. IEEE.

85

https://doi.org/10.48550/ARXIV.2212.04356
https://doi.org/10.48550/ARXIV.2212.04356


Proceedings of MMLoSo 2025: First Workshop on Multimodal Models for Low-Resource Contexts and Social Impact, pages 86–94
December 23, 2025 ©2025 Association for Computational Linguistics

Towards Blind and Low-Vision Accessibility of Lightweight VLMs and
Custom LLM-Evals

Shruti Singh Baghel1,*, Yash Pratap Singh Rathore1,*, Sushovan Jena1,*,
Anurag Pradhan2, Amit Shukla1, Arnav Bhavsar1, Pawan Goyal3

1Indian Institute of Technology Mandi
{s24110, s24036, s20011, amitshukla, arnav}@iitmandi.ac.in

2Vellore Institute of Technology
anurag.pradhan2023@vitstudent.ac.in

3Indian Institute of Technology Kharagpur
pawang@cse.iitkgp.ac.in

*These authors contributed equally to this work.

Abstract

Large Vision-Language Models (VLMs) ex-
cel at understanding and generating video de-
scriptions but their high memory, computa-
tion, and deployment demands hinder practi-
cal use particularly for blind and low-vision
(BLV) users who depend on detailed, context-
aware descriptions. To study the effect of
model size on accessibility-focused descrip-
tion quality, we evaluate SmolVLM2 variants
with 500M and 2.2B parameters across two
diverse datasets: AVCaps (outdoor), and Cha-
rades (indoor). In this work, we introduce two
novel evaluation frameworks specifically de-
signed for BLV accessibility assessment: the
Multi-Context BLV Framework evaluating spa-
tial orientation, social interaction, action events,
and ambience contexts; and the Navigational
Assistance Framework focusing on mobility-
critical information. Additionally, we conduct
a systematic evaluation of four different prompt
design strategies and deploy both models on a
smartphone, evaluating FP32 and INT8 preci-
sion variants to assess real-world performance
constraints on resource-limited mobile devices.

1 Introduction

Large multimodal vision-language models (VLMs),
such as GPT and LLaVA series by OpenAI and
Microsoft (Liu et al., 2023; OpenAI, 2023), have
shown impressive capabilities in understanding and
generating detailed descriptions of visual content.
While these large models can produce high qual-
ity audio descriptions that align with professional
standards, their practical application is restricted

by their high computational requirements, depen-
dence on cloud infrastructure, which requires high
internet bandwidth making them unsuitable for
deployment on everyday devices such as mobile
phones or tablets. This renders them impractical
for BLV users from experiencing real time, private,
on-device accessibility.

Our research investigates if significantly smaller
models, which can operate on resource-limited
devices, can generate video descriptions that are
comparable in quality to those produced by large,
resource-heavy ones. In real world settings, BLV
users require on device solutions capable of provid-
ing timely and detailed descriptions without relying
on remote servers or continuous internet connec-
tivity. A lightweight model integrated into a smart-
phone application could locally process live or pre-
recorded video, enabling synchronized and context-
aware audio feedback such as scene changes, object
appearances, and actions delivered directly through
headphones.

Small vision-language models are emerging as a
promising approach to overcome the drawbacks of
larger models while still delivering competitive per-
formance on specific tasks. These compact models,
usually with fewer than 2 billion parameters, ca-
pable of operating effectively on consumer-grade
hardware, enabling on-device implementation and
real-time processing. SmolVLM2-500M-Video-
Instruct (Allal et al., 2024) and SmolVLM2-2.2B-
Video-Instruct (Marafioti et al., 2024) are notable
developments in this area, tailored for video under-
standing tasks.
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Furthermore, human annotations (HA) and con-
textual information are integrated to enhance model
understanding providing comprehensive guidance
for accessibility-focused video description genera-
tion. However, they frequently fall short for BLV
users who need precise, contextually relevant, and
in-depth information. To address these limitations,
professional audio-description (AD) guidelines de-
veloped by organizations such as Netflix, Ofcom,
Media Access Canada, and the Described and Cap-
tioned Media Program (Li et al., 2025) provide
structured frameworks that ensure consistency in
character identification, scene description, and nar-
rative flow comprehension. As illustrated in Fig-
ure 1, SmolVLM2-500M-Video-Instruct generates
increasingly detailed and accessibility-focused de-
scriptions when enhanced with human annotations
(HA) and professional AD guidelines.

To validate practical deployment viability, we
conducted real-world testing on a mobile device,
evaluating both SmolVLM2 variants in FP32 and
INT8 precision formats.This on-device deployment
approach demonstrates that professional-quality
video descriptions can be generated locally on
consumer devices without cloud connectivity,
establishing feasibility for democratizing video
accessibility for BLV users.

Key Contributions:
(1)We evaluated SmolVLM2 variants across two

different environmental contexts, revealing smaller
models often outperform larger variants in specific
accessibility scenarios.

(2)We implement four progressive prompting
strategies to investigate how instruction complexity
affects model performance for BLV users.

(3)We introduce two specialized evaluation
frameworks, the Multi-Context Evaluation Frame-
work and Navigation Assistance Framework that
address critical gaps in existing evaluation method-
ologies which currently undervalue BLV users’
preferences.

(4)We demonstrate that professional quality
audio-descriptions may be produced locally with-
out relying on the cloud through extensive real-
world deployment testing on consumer-grade
smartphones.

2 DATASETS

Our evaluation utilizes two benchmark datasets
that represent two different environmental con-

texts(indoor and outdoor).

• Indoor Dataset (Sigurdsson et al., 2016):
From the original 9,848 videos (7,985 train-
ing, 1,863 testing), we selected 498 videos
and their corresponding human annotations
from the test set. This represents approxi-
mately 27% of the test set, chosen to include
diverse indoor activities while ensuring bal-
anced representation across activity categories
(cooking, cleaning activities, etc.).

• Outdoor Dataset (Sudarsanam et al., 2024):
We selected 423 outdoor videos and their hu-
man annotations from the complete collection
of 2,061 clips across all partitions. This 20%
sample was stratified across different outdoor
scenarios (urban environments, parks, streets,
natural settings) to maintain environmental
diversity crucial for evaluating outdoor navi-
gation assistance.

We selected this smaller subset of the dataset
to evaluate the model’s performance in di-
verse real-world scenarios with varying light-
ing, weather, and background complexity.

3 Framework

Our research investigates the performance trade-
offs between resource-constrained and resource-
intensive vision-language models for accessibility
-focused video description. We design a compre-
hensive evaluation framework that systematically
compares SmolVLM2-500M-Video-Instruct (Allal
et al., 2024) and SmolVLM2-2.2B (Marafioti et al.,
2024) across diverse video content and prompting
strategies.

3.1 Overview
Our approach enables systematic investigation of
how model size affects accessibility-focused video
description quality across varying instruction com-
plexity levels. Our experimental design employs
four distinct prompting strategies that demonstrate
progressive complexity from baseline approaches
to comprehensive accessibility-focused instruction
integration.

3.2 Model Selection
For our evaluation, we selected SmolVLM2-
500M-Video-Instruct and SmolVLM2-2.2B-Video-
Instruct due to their combined advantages for video
description tasks (Marafioti et al., 2024). Both
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Video Keyframes

Prompt
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Context

Prompt : “ A child is playing on a blue
slide at a playground. The child is wearing
a red hat and....

Prompt+AD: “A man in a black jacket
and red hat is holding a baby in a
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Figure 1: Experimental Design Overview: Four prompting strategies evaluated across SmolVLM variants and
reference model (Qwen). The diagram illustrates progressive complexity from baseline prompt-only approach
to comprehensive prompt with context and audio-description guidelines integration. Each strategy generates
descriptions that are evaluated against ground truth using both standard NLP metrics and custom accessibility
metrics designed for BLV users.

models are explicitly fine-tuned for video under-
standing with temporal mechanisms essential for
coherent description generation, while maintain-
ing exceptional edge deployment viability with
GPU memory requirements of only 1.8 GB and
5.2 GB respectively-significantly lower than larger
alternatives. The 500M variant achieves competi-
tive performance on Video-MME (42.2) with max-
imum computational efficiency, while the 2.2B
variant offers enhanced quality for scenarios with
additional resources, both demonstrating state-of-
the-art performance in their respective parameter
classes. Critically, both variants support robust in-
struction following capabilities necessary for imple-
menting professional audio-description guidelines
from VideoA11y (Li et al., 2025), enabling real-
time inference on consumer hardware and democ-
ratizing video accessibility across different compu-
tational constraints. Specifically, we address three
core research questions:

Q1. How effectively can small models match large
model performance for accessibility-focused
video description when guided by profes-
sional audio-description (AD) guidelines?

Q2. How do performance trade-offs affect deploy-
ment on resource limited hardware such as
smartphones?

Q3. Why custom accessibility metrics are better
than standard NLP metrics in capturing the
true preferences of blind and low-vision users
for the quality of video descriptions?

This comprehensive evaluation enables us to un-
derstand the practical implications of deploying
compact VLMs for accessibility applications while
maintaining the quality standards necessary for
BLV users.

3.3 Comprehensive Approach

We use Qwen2.5-VL-7B (Team, 2025) Instruct
with expert audio-description guidelines from
VideoA11y (Li et al., 2025) to generate ground
truth which correctly processes all 42 audio-
description guidelines and produces descriptions
that meet professional accessibility standards, ex-
hibiting strong instruction following capabilities
necessary for putting VideoA11y’s methodology
into practice.

To efficiently process video content while main-
taining essential visual information, we imple-
mented an adaptive keyframe extraction algorithm
that analyzes inter-frame differences in the LUV
color space. The method computes absolute dif-
ferences between consecutive frames, applies Han-
ning window smoothing, and identifies local max-
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ima in the difference signal. In our implementation,
we extracted 3-4 keyframes per video, while in-
creasing keyframe density can enhance temporal
coverage, it also introduces additional computa-
tional cost, a key consideration for on-device de-
ployment.

Following the experimental paradigm estab-
lished VideoA11y framework (Li et al., 2025), we
use four different prompting techniques to assess
how contextual information and instruction com-
plexity affect model performance: (1) Prompt Only
- utilizing zero-shot generation with the standard-
ized compliant prompt to establish baseline perfor-
mance without additional guidance. (2) Prompt
with Context - incorporating the compliant prompt
with original human annotations from the datasets
to evaluate the model’s ability to leverage existing
annotation information. Context refers to ground-
truth metadata from the datasets (script-based ac-
tions for indoor, audio-visual captions for AV), ex-
actly as implemented in VideoA11y. Human anno-
tations are concatenated with the prompt as "Cur-
rent Description" before being fed to the MLLM.
(3) Prompt with Context and AD Guidelines - com-
bining the prompt with human annotations and 42
professional audio-description guidelines to assess
comprehensive multimodal instruction following.
(4) Prompt with AD Guidelines - integrating the
compliant prompt with audio-description guide-
lines only to test whether structured accessibility
guidelines alone can enable compact models to
produce descriptions meeting BLV users’ require-
ments.

3.4 Proposed Evaluation Frameworks

Our evaluation protocol addresses the critical limi-
tations of reference based metrics for accessibility
applications (Kapur and Kreiss, 2024). We employ
dual assessment methodologies: standard NLP met-
rics for comparison with existing research, and two
novel accessibility-centric evaluation frameworks.
These frameworks are specifically designed to re-
flect BLV users’ actual needs and preferences. This
dual evaluation approach overcomes the systematic
bias that reference based metrics exhibit against
BLV users’ preferences, as demonstrated by Ka-
pur and Kreiss (Kapur and Kreiss, 2024). While
VideoA11y effectively assess general description
quality, they lack granularity for diverse BLV con-
texts and navigational needs. To fill these gaps, we
introduce two complementary frameworks: Mult-

Context BLV Framework and Navigational Assi-
atance Framework.

3.4.1 Multi-Context BLV Framework
This framework evaluates descriptions across four
critical user scenarios that reflect diverse BLV in-
formation needs in real-world settings:

(i) Spatial Orientation (1-10 scale): Assesses lo-
cation descriptions, directional cues, relative
positioning, and environmental layout infor-
mation essential for mental mapping.

(ii) Social Interaction (1-10 scale): Evaluates
person identification, interpersonal dynamics,
emotional expressions, and social context cru-
cial for understanding human interactions.

(iii) Action & Events (1-10 scale): Measures tem-
poral sequence clarity, activity description
completeness, and causal relationships be-
tween events.

(iv) Ambience (1-10 scale): Captures mood, light-
ing conditions, environmental atmosphere,
and sensory details that enhance immersive
comprehension.

MCF_Score =
1

4

(
Sspatial + Ssocial + Saction

+SAmbience
)

where:

• Sspatial ∈ [1, 10]: Spatial Orientation Context
score

• Ssocial ∈ [1, 10]: Social Interaction Context
score

• Saction ∈ [1, 10]: Action & Event Context
score

• SAmbience ∈ [1, 10]: Ambience Context score

Our framework weights these dimensions based
on navigation critical scenarios rather than general
description quality.

3.4.2 Navigational Assistance Framework
This framework focuses on mobility critical infor-
mation through four dimensions essential for spa-
tial navigation and safety:

(i) Descriptiveness: Spatial layout detail, hazard
identification, and environmental feature de-
scriptions (obstacles, pathways, boundaries).
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(ii) Objectivity: Factual reporting without as-
sumptions, avoiding subjective interpretations
of spatial relationships.

(iii) Accuracy: Precision in spatial relationships,
object positions, and distance estimations crit-
ical for navigation decisions.

(iv) Clarity: Information organization for sequen-
tial navigation decision-making, including
logical flow and unambiguous directional ref-
erences.

NAF_Score =
1

4

(
Ndescriptiveness +Nobjectivity

+Naccuracy +Nclarity

)

where:

• Ndescriptiveness ∈ [1, 10]: Descriptiveness met-
ric score

• Nobjectivity ∈ [1, 10]: Objectivity metric score

• Naccuracy ∈ [1, 10]: Accuracy metric score

• Nclarity ∈ [1, 10]: Clarity metric score

3.4.3 Implementation and Validation
For custom accessibility metrics evaluation, we em-
ploy GPT-OSS-20B(OpenAI, 2025), a 20-billion
parameter open-source language model, following
the VideoA11y evaluation methodology (Li et al.,
2025). We conducted all evaluations with GPT-
OSS-20B running locally via the Ollama(Ollama,
2024) server to ensure offline, reproducible results
without network dependencies. The model pro-
cesses both our Qwen2.5-VL-7B Instruct gener-
ated ground truth descriptions and descriptions pro-
duced by both SmolVLM variants (500M and 2.2B)
using VideoA11y’s standardized evaluation tem-
plate, enabling consistent assessment of the four
custom accessibility dimensions. The systematic
evaluation enables investigation of our three core
research questions outlined earlier (Section 3.2).

3.5 Mobile Deployment and Performance
Evaluation

To assess real-world deployment viability for ac-
cessibility applications, we conducted comprehen-
sive on-device evaluation using a Vivo Y27 smart-
phone equipped with a MediaTek Helio G85 octa-
core processor and Mali-G52 MC2 GPU with 6GB

shared system memory. Our deployment method-
ology employed the llama.cpp framework’s llama-
mtmd-cli tool, requiring model conversion to .gguf
format for mobile compatibility. FP32 variants
were converted from their original safetensors for-
mat using the official convert_hf_to_gguf.py script,
while INT8 quantized versions were generated
through Hugging Face’s "GGUF My Repo" fea-
ture to evaluate precision-performance trade-offs
essential for resource-constrained deployment.

The mobile execution environment utilized Ter-
mux for Android terminal access, enabling local
compilation of llama-mtmd-cli and direct model
inference without external dependencies. We im-
plemented a keyframe extraction pipeline using
FFmpeg within the mobile environment, process-
ing videos into sequential image frames that were
combined with textual prompts incorporating pro-
fessional AD guidelines.

Both FP32 and INT8 versions of the two mod-
els were tested under identical conditions. This
setup allowed us to collect detailed performance
measurements, including latency, memory usage,
and operational behavior during inference on a
resource-constrained mobile platform.

4 Results and Discussions

All experiments maintain consistent hardware con-
figurations and inference parameters to ensure re-
producible comparative analysis between resource
constrained and larger models for accessibility fo-
cused video description generation.

Table 1 reveals that SmolVLM2-500M demon-
strates strong prompt sensitivity with clear perfor-
mance patterns across indoor and outdoor scenar-
ios. The Prompt + AD Guidelines approach dom-
inates most evaluation metrics on both datasets,
showing consistent alignment with AD-style ref-
erences and superior lexical overlap performance.
However, Prompt + Context + AD Guidelines occa-
sionally excels in semantic-matching metrics like
METEOR, indicating that contextual information
can enhance meaning preservation. The model
shows a notable bias toward AD-style instructions
due to reference generation conditions and gener-
ally performs better on indoor Charades scenarios
compared to outdoor AVCaps environments.

Table 2 demonstrates that the larger 2.2B
model exhibits different contextual utilization
patterns. Table 1 presents results for all four
prompting strategies using the 500M model
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Table 1: SmolVLM2-500M-Video-Instruct: Standard NLP Metrics Performance.

Strategy/Dataset BLEU-1 BLEU-4 METEOR ROUGE-L SPICE CIDER

Indoor
Prompt Only 0.191 0.046 0.145 0.254 0.194 0.134
Prompt + Context 0.304 0.062 0.112 0.251 0.153 0.136
Prompt + AD Guidelines 0.311 0.077 0.156 0.275 0.180 0.172
Prompt + Context + AD 0.287 0.070 0.153 0.268 0.173 0.194

Outdoor
Prompt Only 0.135 0.029 0.139 0.235 0.187 0.116
Prompt + Context 0.195 0.034 0.120 0.220 0.155 0.137
Prompt + AD Guidelines 0.223 0.047 0.148 0.251 0.194 0.207
Prompt + Context + AD 0.273 0.055 0.162 0.247 0.171 0.131

Table 2: SmolVLM2-2.2B-Instruct: Standard NLP Metrics Performance

Strategy / Dataset BLEU-1 BLEU-4 METEOR ROUGE-L CIDEr SPICE

Indoor
Prompt + AD Guidelines 0.2723 0.0619 0.1353 0.2606 0.1930 0.1768
Prompt + Context + AD Guidelines 0.3271 0.0798 0.1363 0.2750 0.2258 0.1841

Outdoor
Prompt + AD Guidelines 0.1850 0.0345 0.1515 0.1946 0.0884 0.1462
Prompt + Context + AD Guidelines 0.1878 0.0331 0.1485 0.1913 0.0719 0.142

Table 3: SmolVLM2-2.2B-Instruct: Custom Accessibility Metrics Performance

Strategy / Dataset Descriptive Objective Accurate Clear

Indoor
Prompt + AD Guidelines 2.508 3.25 1.935 3.345
Prompt + Context + AD Guidelines 2.529 3.246 1.78 3.414

Outdoor
Prompt + AD Guidelines 2.908 2.712 1.778 3.095
Prompt + Context + AD Guidelines 2.936 2.761 1.835 3.222

whereas Table 2 reports results for the two best-
performing strategies:"Prompt + AD Guidelines"
and "Prompt+Context+AD Guidelines". This deci-
sion was driven by Table 1’s clear demonstration
that basic "Prompt Only" and "Prompt+Context"
strategies consistently underperform compared to
AD-enhanced approaches across all standard NLP
metrics; therefore we omitted these two strategies
for 2.2B model. In indoor scenarios, adding con-
textual information substantially enhances perfor-
mance across all metrics, with Prompt + Context +
AD Guidelines consistently outperforming the ba-
sic AD approach. This indicates the larger model
can effectively exploit additional context to im-
prove generation quality in structured, predictable
environments. However, in outdoor scenarios, the
performance gap narrows significantly, with con-
text sometimes failing to provide meaningful im-
provements and occasionally diluting performance
in precision-focused measures.

Table 3 examines how contextual integration af-

fects description quality for BLV users. In indoor
environments, adding context provides modest im-
provements in descriptiveness and clarity but in-
troduces slight decreases in objectivity and more
notable declines in accuracy, suggesting that en-
hanced vividness may come at the cost of strict
factual reporting. Conversely, in outdoor environ-
ments, contextual cues prove particularly valuable,
benefiting all evaluation dimensions with especially
notable improvements in clarity and accuracy. This
pattern indicates that contextual information helps
BLV users gain a better awareness of space and
is especially helpful in dynamic, visually complex
outdoor environments.

Table 4 reveals distinct strengths between model
variants when using optimal prompting strategies.
The 2.2B model demonstrates superior clarity and
accuracy, along with better objectivity in indoor
scenarios, making it more dependable for produc-
ing trustworthy, accessible descriptions, while the
smaller model excels in descriptive richness.

91



Table 4: Model Performance Comparison: Prompt + Context + AD Guidelines Strategy using custom metrics

SmolVLM2-500M-Video-Instruct SmolVLM2-2.2B-Instruct

Metric Outdoor Indoor Outdoor Indoor

Descriptive 3.031 2.779 2.936 2.529
Objective 2.747 2.793 2.761 3.246
Accurate 1.719 1.627 1.835 1.780
Clarity 3.177 3.094 3.222 3.414

Table 5: Performance Comparison of SmolVLM2 Models with FP32 and INT8 Quantization

Metric SmolVLM2-500M SmolVLM2-2.2B

FP32 INT8 FP32 INT8

Latency (ms) 33639.04 29904.29 2000642.04 201306.71
Peak DRAM Usage 1142.784 MB 761.856 MB 2797.216 MB 2512.896 MB
Model Size 190.22 MB 103.73 MB 831.87 MB 565.05 MB
Tokens Per Second 6.41 13.55 0.05 1.47

(generation speed)
Time to First Token 17120.57 ms 18797.63 ms 150457.48 ms 123936.97 ms
Time Per Output Token 155.95 ms 73.81 ms 18501.90 ms 680.44 ms
Token Generation Time 10604.30 ms 8192.60 ms 1813186.29 ms 70085.14 ms

Table 6: Quantitative Results for Multi-Context Evaluation Framework

Model Variant Spatial Orientation Social Interaction Action & Event Ambience

Outdoor
500M 3.556 3.206 2.585 4.664
2.2B 3.416 3.271 2.632 4.925

Indoor
500M 3.223 3.281 2.126 4.318
2.2B 2.976 3.332 1.949 3.532

Table 5 shows results from llama-cpp inference
framework. The metrics clearly indicate the low-
memory and latency of 500M model over 2.2B.
Total latency comprises Load Time (model load-
ing), Prompt Evaluation Time (input processing
and tokenization), and Generation Time (step-by-
step token generation). Latency depends on both
per-token processing speed and the number of gen-
erated tokens. For the 500M INT8 model, quan-
tization alters output probabilities due to reduced
precision, leading to longer token sequences and
increased Generation Time compared to FP32. Al-
though the INT8 model achieves faster per-token
processing (73.8 ms/token vs. 155.9 ms/token for
FP32), it generates more tokens (111 vs. 68), re-
sulting in higher overall latency.

In Table 6, the multi-context evaluation frame-
work shows that model size scaling does not uni-
formly improve performance across all contex-
tual dimensions for BLV users. The 500M model
demonstrates better performance in Ambience con-

text description, showing that the smaller mod-
els are good at capturing environmental scenarios
and visual mood essential for BLV spatial under-
standing. The Action & Event context consistently
scores lowest across all model-dataset combina-
tions, showing the critical limitation in temporal
sequence description that affects BLV users’ ability
to follow dynamic content.

Three distinct failure patterns are identified
via analysis: inaccurate temporal ordering across
keyframes, missing causal linkages between events,
and collapsing sequential actions into static descrip-
tions ("person near door" instead of "opens, enters,
closes door"). Crucially, the Action & Event scores
for both model variations are comparable (500M:
2.36 average, 2.2B: 2.29 average), suggesting that
our 3 to 4 keyframe sampling rate discussed in Sec-
tion 3.3 rather than the model’s reasoning ability
is the bottleneck. Regardless of the number of pa-
rameters, this sparse temporal sample only records
one frame every two to three seconds, which is
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Table 7: Quantitative Results for Navigation Assistance Framework

Model Variant Descriptiveness Objective Accurate Clarity

Outdoor
500M 3.570 5.107 3.147 3.930
2.2B 3.239 4.909 3.370 3.742

Indoor
500M 3.258 5.02 3.002 3.533
2.2B 2.808 5.193 3.519 3.478

insufficient for tracking fast motions.
Table 7 demonstrate that the 500M model con-

sistently outperforms the 2.2B variant in Objectiv-
ity scores, indicating that smaller models provide
more factual, assumption-free descriptions crucial
for BLV navigation safety. However, the larger
model shows better accuracy performance in out-
door scenarios, suggesting enhanced spatial preci-
sion in complex environments. The consistently
moderate Descriptiveness scores across two models
reveal a critical gap in providing the detailed spa-
tial information that BLV users require for effective
navigation.

The 500M model excel in BLUE-1, BLEU-4, so
the larger model is not strictly better in automatic
metrics. It is because the 500M tends to gener-
ate shorter, more literal captions which align more
closely with the reference wordings and has better
n-gram overlap than generated by the larger model.
Larger VLMs (2.2B) tend to infer extra context or
add own creativity, which LLM-as-judge models
may penalize as less "objective" or less "accurate",
even if they sound fluent. A 500 M model generates
straight and contrained outputs which are easy to
parse and thus rated higher on clarity; larger mod-
els introduce more complex phrasing that affects
the clarity as perceived by the judge (LLM).

The 500M model demonstrates superior perfor-
mance in outdoor scenarios and achieves higher ob-
jectivity scores (5.02-5.11) crucial for BLV safety,
while the 2.2B model excels in indoor clarity (3.414
vs 3.094) and spatial accuracy. Action Events score
lowest (1.95–2.63) due to VLMs’ difficulty with
sequential temporal reasoning, while Descriptive-
ness (2.5–3.6) indicates limited spatial detail for
safe BLV navigation.

5 CONCLUSION

Our comprehensive evaluation reveals three crit-
ical insights that challenge conventional assump-
tions about model scaling for accessibility appli-
cations. We introduce two novel evaluation frame-

works "Multi-Context BLV Framework" and "Nav-
igational Assistance Framework" that systemati-
cally address the bias of reference-based metrics
against BLV user preferences. These frameworks
demonstrate that smaller models (500M parame-
ters) often excel in environmental adaptability and
objective description generation, while larger mod-
els (2.2B parameters) provide enhanced precision
in structured scenarios. Mobile evaluation estab-
lishes the feasibility of edge deployment with 60 -
83 second inference times for 500M models on con-
sumer hardware, addressing privacy and connec-
tivity barriers that disproportionately affect BLV
users. We also discuss the caveats of model scaling
and show that smaller models can perform better
in metrics than larger when context is focused and
resource-limited, not only in latency, also in de-
scription quality when the trade-off is not much.

While we demonstrate computational feasibility
(latency/memory), our current evaluation does not
measure the ‘Time-to-Audio’ perceived by users,
which includes Text-to-Speech (TTS) overhead.
Furthermore, our use of GPT-OSS-20B as a judge
cannot fully replace human BLV validation. Fu-
ture work will focus on end-user studies to as-
sess real-world usability. The practical deployment
of accessibility-focused VLMs on ubiquitous con-
sumer technology represents a significant step to-
ward democratizing video accessibility, providing
BLV users with immediate, private, and contex-
tually relevant video descriptions independent of
internet connectivity or centralized services.
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Abstract

In this study, we examine and evaluate two
multilingual NMT models, IndicTrans2 and
ByT5, for English-Santali bidirectional transla-
tion using the Ol Chiki script. The models are
trained on the MMLoSo Shared Task dataset,
supplemented with public English-Santali re-
sources, and evaluated on the AI4Bharat IN22
and Flores test sets, specifically IN22-Gen and
Flores200-dev. IndicTrans2 finetune strongly
outperforms ByT5 across both directions. On
IN22-Gen, it achieves 26.8 BLEU and 53.9
chrF++ for Santali→English and 7.3 BLEU
and 40.3 chrF++ for English→Santali, com-
pared to ByT5’s 5.6 BLEU and 30.2 chrF++
for Santali→English and 2.9 BLEU and 32.6
chrF++ for English→Santali. On the Flores test
set, IndicTrans2 finetune achieves 22 BLEU,
49.2 chrF++, and 4.7 BLEU, 32.7 chrF++.
Again, it surpasses ByT5. While ByT5’s byte-
level modelling is script-agnostic, it struggles
with Santali morphology. IndicTrans2 bene-
fits from multilingual pre-training and script
unification.

1 Introduction

Natural Language Processing (NLP) has made sig-
nificant progress in a short amount of time, result-
ing in substantial improvements in machine transla-
tion (MT), particularly for languages with extensive
resources. However, many low-resource languages
(LRLs), particularly those spoken by indigenous
and tribal groups, are underrepresented in digital
spaces. Santali, a primary tribal language spoken
by millions of people in India, Bangladesh, and
Nepal, is a good example of this difference. Santali
is widely spoken and essential to the culture, but
it is still not well represented in digital form, with
few language resources available for computational
uses, such as machine translation.

A major problem with making strong machine
translation systems for Santali is that there aren’t
many large, high-quality parallel corpora available
(lrl, 2025) Conventional machine translation sys-
tems, including neural architectures, necessitate
extensive bilingual data to proficiently acquire the

mapping between source and target languages. The
absence of annotated resources significantly hin-
ders the translation quality for Santali, which em-
ploys the Ol Chiki script, a writing system that
is not extensively supported in conventional NLP
tools and tokenisers.

This research addresses these issues by evaluat-
ing two sophisticated multilingual translation mod-
els, IndicTrans2 (Gala et al., 2023) and ByT5 (Xue
et al., 2022), for the bidirectional translation of
English–Santali . IndicTrans2 is a transformer-
based model that works best with Indian low-
resource fo Indic languages (Pakray et al., 2024). It
is well known for its ability to transfer information
between languages in environments with limited
resources. ByT5 works at the byte level, which
means it can handle scripts and characters that
aren’t visible. This suggests that it could enhance
language inclusivity and reach a diverse range of
linguistic communities.

We use quantitative metrics, such as BLEU and
chrF++, to evaluate the quality of translations into
the Ol Chiki script. Our research aims to demon-
strate the versatility of models for underrepresented
languages and to promote the development of more
inclusive and accessible machine translation sys-
tems for low-resource linguistic communities.

2 Related Works

Research in machine translation (MT) for low-
resource (Singh et al., 2023b) languages (LRLs)
has gained significant momentum in recent years,
as the NLP community increasingly focuses on
linguistic inclusivity and equitable access to tech-
nology. Early approaches to MT primarily relied
on rule-based and statistical methods, which re-
quired extensive linguistic expertise and manually
crafted translation rules. Although these systems
were innovative for their time, they often suffered
from scalability issues and produced suboptimal
results for languages with limited parallel corpora
(Singh et al., 2024b) and sparse digital resources.

The emergence of neural machine translation
(NMT) (Appicharla et al., 2024) has revolutionised
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the field by introducing deep learning architectures
capable of modelling complex language patterns.
The Transformer model and its subsequent vari-
ants demonstrated remarkable improvements in
translation fluency and accuracy, particularly for
high-resource languages. However, NMT models
remained heavily data-dependent, and their effec-
tiveness diminished substantially for low-resource
languages that lacked sufficient training data.

To address this limitation, researchers have be-
gun developing multilingual NMT models (Singh
et al., 2024a) capable of learning shared represen-
tations across multiple languages. Such models
leverage (Singh et al., 2023a) cross-lingual transfer
(Wei et al., 2024) learning, enabling knowledge
gained from high-resource languages to improve
translation quality for related low-resource ones.
IndicTrans2 represents one such advancement tai-
lored explicitly for Indian languages (Dabre and
Kunchukuttan, 2024). It employs a shared multi-
lingual (Limisiewicz et al., 2024) encoder–decoder
architecture, effectively utilising linguistic similar-
ities among Indo-Aryan and Dravidian languages
to enhance performance for low-resource pairs.

In contrast, ByT5 belongs to a newer generation
of models that operate at the byte level, eliminat-
ing the need for language-specific tokenisation. By
processing text as raw bytes, ByT5 can seamlessly
handle diverse writing systems and scripts, includ-
ing those that are poorly represented in mainstream
tokenisers. This makes it particularly advantageous
for languages like Santali, which is written in the
Ol Chiki script, a script not widely supported in
traditional NLP pipelines.

Our work builds upon these foundational ad-
vances by applying and comparing IndicTrans2
and ByT5 to the English–Santali translation task.
Through this comparative analysis, we aim to eval-
uate how multilingual and byte-level (Nehrdich
et al., 2024) modelling approaches perform on
a genuinely low-resource (Bhaskar and Krishna-
murthy, 2024) language with unique orthographic
and linguistic characteristics.

3 Linguistics of Santali

Santali1 is one of the Munda languages in the Aus-
troasiatic language family. Other Munda languages
include Mundari, Ho, and Korku. The Santal com-
munity, which is one of the largest indigenous

1https://en.wikipedia.org/wiki/Santali_
Wikipedia

tribal groups in India, speaks it most of the time.
The Santali-speaking population is estimated to
be around 7 million, primarily residing in the In-
dian states of Jharkhand, West Bengal, Odisha, and
Bihar. There are also smaller groups of speak-
ers in Assam and neighbouring countries, such as
Bangladesh and Nepal.

In the past, Santali was written in several scripts,
including Devanagari, Bengali, Odia, and Latin-
based orthographies. This was because of regional
language influences and colonial legacies. In 1980,
however, the Ol Chiki script, which Pandit Raghu-
nath Murmu developed in the mid-20th century,
was officially recognised as the standard writing
system for Santali. Ol Chiki was made to better
show the phonological structure of the language
than borrowed scripts, which had problems with
sound representation and spelling consistency.

The use of Ol Chiki has been very helpful in
reviving Santali, maintaining its vitality, and mak-
ing it more consistent. It has helped the language
get more attention in formal education, literature,
and online spaces. Alternative scripts are still used
informally, particularly in regions with multiple
languages. However, the Government of India now
officially recognises Ol Chiki and supports it in the
Unicode Standard, ensuring it works with modern
computer systems.

To sum up, Santali is a vibrant language with
numerous forms and rich cultural significance for
the Santal people. The institutionalisation of Ol
Chiki is a crucial step toward preserving its lin-
guistic identity and ensuring it is represented in the
digital and technological age.

4 Methodology

In this study, we delineate the methodology in
two principal phases: dataset preprocessing and
model architecture. First, we explain how we made
and organized the English-Santali parallel dataset
for training. Second, we examine the architecture
of the two models used, IndicTrans2 and ByT5,
and explain how each is utilised to translate from
English–Santali.

4.1 Datasets

The dataset utilised in this study significantly ex-
pands upon the original 20,000 English–Santali
parallel sentences provided by the MMLoSo 2025
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Split Sentence English Santali

Train Set 104,451 1,082,726 1,036,528
Valid 1503 14,850 16,001
Test IN22 1024 25,348 26,676
Test Flores 997 20,955 22,912

Total 107,975 1,143,879 1,102,117

Table 1: Dataset statistics for the English–Santali cor-
pus. The table reports the number of sentences and
total tokens in English and Santali across the training
set, IN22-Conv validation set, IN22-Gen test set, and
Flores200-dev test set.

Category Details for ByT5 Model finetune

ByT5 Training Configuration
Model google/byt5-small (byte-level)
Batch Size 64
Learning Rate 3× 10−4

Epochs 5
Max Length 256 characters (source & target)

Evaluation Metrics
Metrics BLEU, chrF++, CER (Character Error Rate)

Important Flags
data_dir Path to dataset (required)
output_dir Directory to save model (required)
fp16 Enable mixed precision training
lowercase Normalize all text to lowercase

Table 2: Training configuration for ByT5 finetuning.

organisers 2. To enhance model robustness and im-
prove translation quality, we incorporate publicly
available English–Santali resources3, followed by
data augmentation techniques to increase corpus di-
versity further. After integration and preprocessing,
the final dataset, as presented in Table 1, comprises
107,975 parallel sentences, covering a broad spec-
trum of domains, including culture, daily commu-
nication, news-style texts, and general knowledge.

All sentence pairs were manually inspected for
alignment quality. Comprehensive preprocessing
was applied, including text cleaning, Unicode nor-
malisation for the Ol Chiki script, tokenisation,
and consistency checks to ensure high-quality par-
allelism. The expanded corpus reflects Santali’s
rich morphology, with the Santali side containing
1,102,117 tokens, compared to 1,143,879 tokens
on the English side.

The dataset is divided into a training set, IN22-

2https://www.kaggle.com/competitions/
mmloso2025/data?select=santali-train.csv

3https://opus.nlpl.eu/results/en&sat/
corpus-result-table

Category Details for IndicTrans2 finetune

Optimization
Optimizer Adam (β1 = 0.9, β2 = 0.98)
Learning Rate 3× 10−5 with inverse square root decay
Warmup 2,000 steps (from 1× 10−7)
Gradient Clipping 1.0

Training Configuration
Batch Size 32,768 tokens (effective across 8 GPUs)
Max Updates 100,000
Mixed Precision FP16

Regularization
Dropout 0.2
Label Smoothing 0.1
Early Stopping Patience of 10 checkpoints (BLEU-based)

Table 3: Training configuration for IndicTrans2 finetun-
ing.

Conv validation set, and two test sets (IN22-Gen
and Flores200-dev). Table 1 provides the complete
dataset breakdown. On average, English sentences
contain 14–16 tokens, whereas Santali sentences
contain 17–19 tokens, indicating Santali’s morpho-
logically richer structure. The dataset and related
resources are available.4

4.2 Model Architecture
ByT5 Architecture: The proposed English-
Santhali translation system is based on the ByT5
architecture Table 2, a token-free version of the T5
and mT5 (Xue et al., 2021) transformer models. It
was designed to work directly on raw UTF-8 bytes,
rather than using subword tokenisation. This de-
sign doesn’t use word tokens, allowing the model to
handle any language script, including low-resource
and morphologically complex languages such as
Santhali, which can be written in multiple scripts,
like Ol Chiki and Devanagari. ByT5 has a small
vocabulary of only 256 bytes. It uses a sequence
of byte values to represent each character, which
solves problems with words that aren’t in the lan-
guage, spelling mistakes, and noisy input. The
model is based on an encoder-decoder framework,
but it uses an unbalanced "heavy encoder" archi-
tecture, where the encoder is three times deeper
than the decoder. The model can learn a soft lexi-
con by understanding word structure, morphology,
and syntactic patterns directly from byte sequences
thanks to this deeper encoder. The decoder, on the
other hand, focuses on making coherent target text.
Additionally, ByT5 relocates the parameters that
traditional models utilise for large token embed-

4https://github.com/helloboyn/
MMLoSo25-IT2-BT5-ES-MT
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Testset Model BLEU (En→Sa) chrF++ (En→Sa) BLEU (Sa→En) chrF++ (Sa→En)

IN22-Gen
IndicTrans2-baseline 5.5 35.8 24.8 51.0
IndicTrans2-finetuned 7.3 40.3 26.8 53.9
ByT5 Model 2.9 32.6 5.6 30.2

Flores200-dev
IndicTrans2-baseline 3.3 29.5 19.5 45.1
IndicTrans2-finetuned 4.7 32.7 22.0 49.2
ByT5-finetune 2.7 23.7 6.1 26.7

Table 4: BLEU and chrF++ evaluation scores for IndicTrans2 (baseline and finetuned) and ByT5 on the IN22-Gen
and Flores200-dev test sets for both translation directions.

dings to its transformer layers, making them more
powerful and efficient. The model is pre-trained
with a span corruption objective that hides longer
byte spans to help it understand the context better.
When fine-tuning for English to Santhali transla-
tion, the encoder takes English sentences and turns
them into byte sequences. The decoder then makes
the Santhali translation one byte at a time. The
ByT5 architecture offers several benefits, including
the ability to work with any script, handle noisy
or unseen inputs, and generalise effectively. This
makes it a great choice for building reliable trans-
lation systems for low-resource languages, such as
Santhali.

IndicTrans2 Architecture: IndicTrans2 (Gala
et al., 2023) is an innovative multilingual neural
machine translation (NMT) model that uses the
Transformer architecture 3. A shared multilingual
encoder-decoder framework enables it to work with
a wide range of Indian languages. The model im-
proves translations by leveraging the fact that In-
dian languages share similarities with each other.
This is especially true for pairs with limited re-
sources, such as English–Santali. The main things
about IndicTrans2 are: The Transformer model is
the basis for IndicTrans2. It utilises self-attention
mechanisms to identify both short- and long-range
dependencies within sentences. This enables the
model to produce translations that are both fluent
and contextually relevant. Multilingual Training:
The model learns from a large amount of data that
is similar across different Indian languages. This
lets it learn shared representations, which helps
it generalise better and makes it easier for high-
resource languages to share information with low-
resource languages. Shared Embeddings: Indic-
Trans2 utilises shared embedding spaces across
languages to leverage patterns that are common to
both languages. This method improves the ability
to translate between languages that are significantly
different from each other. Fine-Tuning Capability:

The model can be fine-tuned for specific language
pairs, allowing it to adjust to the unique syntax,
morphology, and script of languages with limited
resources, such as Santali.

5 Evaluation Metrics and Analysis

We evaluate our English to Santali and Santali to
English translation models using two standard au-
tomatic metrics: BLEU (Papineni et al., 2002) and
chrF++ (Popović, 2017). BLEU measures n-gram
precision and is widely used for machine transla-
tion quality estimation, whereas chrF++ captures
character-level similarity and is particularly effec-
tive for morphologically rich languages such as
Santali.

Table 4 reports the results on two benchmark
datasets, IN22-Gen with 1,024 sentences and
Flores200-dev with 997 sentences. The compari-
son includes three systems: IndicTrans2-baseline,
IndicTrans2-finetuned, and ByT5.

Across both datasets and translation directions,
IndicTrans2-finetuned consistently achieves the
best performance. On the IN22-Gen set, the model
attains 7.3 BLEU and 40.3 chrF++ for English
to Santali, and 26.8 BLEU and 53.9 chrF++ for
Santali to English. In contrast, ByT5 yields 2.9
BLEU and 32.6 chrF++ for English to Santali, and
5.6 BLEU and 30.2 chrF++ for Santali to English.
These results indicate that byte-level modelling is
less effective in handling the Ol Chiki script and
Santali morphology.

The same pattern is observed on Flores200-dev.
IndicTrans2-finetuned achieves 4.7 BLEU and 32.7
chrF++ for English to Santali, and 22.0 BLEU
and 49.2 chrF++ for Santali to English. ByT5
again performs considerably lower, reinforcing that
subword-based multilingual pretraining is more
suitable for this low-resource language pair.

Overall, the findings clearly demonstrate that
IndicTrans2, especially when finetuned, provides
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superior translation quality for English–Santali, of-
fering stronger lexical accuracy, improved handling
of the Ol Chiki script, and better character-level
consistency compared to ByT5.

6 Conclusion

In this work, we investigated English–Santali ma-
chine translation using the Ol Chiki script and con-
ducted a focused comparison between two multilin-
gual models: ByT5 and IndicTrans2. By isolating
the English–Santali pair, we provided a clear assess-
ment of model performance on this low-resource
language. Our results show that the finetuned Indic-
Trans2 model consistently delivers higher BLEU
and chrF++ scores than ByT5 across multiple
benchmarks and translation directions. These find-
ings highlight the advantages of subword-based
multilingual pretraining for handling Santali’s mor-
phology and script-specific characteristics. Overall,
our study demonstrates that careful model selec-
tion and targeted finetuning play a crucial role in
improving translation quality for low-resource lan-
guages, contributing to broader efforts toward digi-
tal inclusion and linguistic preservation.
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Abstract

Low-resource machine translation for Indic lan-
guages remains challenging, especially when
high-resource languages such as Hindi and En-
glish must be translated to and from very low-
resource, grammatically rich languages like
Bhili, Mundari, Santali, and Gondi.

We describe our winning system for a recent
shared task in this setting. We start from a
strong pretrained Indic MT backbone, Indic-
Trans2, and fine-tune it jointly on all translation
directions, pushing the model close to memo-
rization under strict data constraints. On top of
this backbone, we add direction-specific low-
rank adapters based on LoRA that allow each
language pair to specialize while still sharing
most parameters. At inference time, we fur-
ther couple these directional adapters through a
noisy-channel objective, in which forward and
reverse models jointly score a set of candidate
translations, encouraging outputs that are both
fluent in the target language and informative
about the source.

This combination of shared pretraining, di-
rectional parameter-efficient adaptation, and
noisy-channel reranking substantially improves
over a strong fine-tuned baseline. We re-
lease our codebase at https://github.com/
SajayR/LoRA-in-All-Directions.

1 Introduction

The MMLoSo shared task (mml, 2025) targets
a difficult gap in machine translation: bridging
high-resource languages (Hindi, English) with ex-
tremely low-resource community languages (Bhili,
Mundari, Santali, Gondi). These languages are par-
ticularly challenging for standard models because
they utilize diverse scripts (such as Ol Chiki) and
complex word structures, yet lack the large-scale
parallel data required to learn these features effec-
tively.

In this regime, standard training strategies face
a dilemma. Training separate models for each di-

rection creates data fragmentation, leading to poor
convergence. Conversely, joint multilingual fine-
tuning maximizes transfer learning but introduces
interference (or “negative transfer”), where the
model’s capacity is dominated by high-resource di-
rections, often resulting in script hallucinations or
morphological simplification in the lower-resource
targets.

Our winning submission addresses this trade-off
through a saturate-then-specialize strategy. We
hypothesize that while a shared backbone is nec-
essary to learn general linguistic representations,
distinct parameter spaces are required to resolve or-
thographic and grammatical conflicts. We therefore
combine massive joint fine-tuning (to saturate the
backbone with domain knowledge) with direction-
specific Low-Rank Adapters (LoRA) (to isolate
task-specific constraints) (Hu et al., 2022). Fi-
nally, to counter the semantic drift common in low-
resource generation, we abandon greedy decoding
in favor of a noisy-channel formulation (Pang et al.,
2022), using the LoRA adapters to strictly enforce
mutual consistency between source and translation.

2 Task and Data

2.1 Shared task setup
The shared task focuses on translation between
two high-resource languages (Hindi, English) and
four low-resource Indic languages: Bhili, Mundari,
Santali, and Gondi. Let

L = {Hindi,English,Bhili,

Mundari, Santali,Gondi}

be the set of languages.
A translation direction is defined as an ordered

pair d = (ℓs → ℓt) with ℓs, ℓt ∈ L. The task
provides parallel datasets Dd = {(x(i), y(i))}Nd

i=1

for each direction, where source x and target y are
in their native scripts. The objective is to produce
a translation ŷ given x and the direction d.
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2.2 Leaderboard Score

The leaderboard reports a single scalar score S that
mixes BLEU(Post, 2018) and chrF(Popović, 2015)
across all eight directions.

Let BLEUH→L be the mean BLEU over the
four high→low directions (Hin→Bhi, Hin→Mun,
Hin→Gon, Eng→San), and let BLEUL→H be
the mean over the four low→high directions
(Bhi→Hin, Mun→Hin, Gon→Hin, San→Eng).
We define chrFH→L and chrFL→H analogously, re-
placing BLEU with chrF.

The final score is

S = 0.6
(
0.6BLEUH→L + 0.4BLEUL→H

)
(1)

+ 0.4
(
0.6 chrFH→L + 0.4 chrFL→H

)
. (2)

BLEU contributes 60% of S and chrF 40%;
within each metric, high→low directions get 60%
of the weight and low→high directions 40%.

Two variations of this score are reported: the
Public Score, calculated on a fixed 25% subset
of the test data during the competition, and the
Private Score, calculated on the remaining 75%
hidden subset to determine the final rankings.

3 Methodology

4 Backbone Selection

We initially compared NLLB-200 (600M) (NLLB
Team et al., 2022) and IndicTrans2 (360M) (Gala
et al., 2023) by fine-tuning both for 100k steps. Ta-
ble 1 shows that IndicTrans2 outperformed NLLB
by nearly 9 points despite being half the size.

Backbone Public Score

NLLB-600M 243.18
IndicTrans2-360M 252.11

Table 1: Leaderboard scores at 100k steps.

Tokenization analysis (Table 2) reveals that
NLLB suffers from higher word fragmentation
across the board. In contrast, IndicTrans2 offers far
superior tokenization stability. While this comes at
the cost of a slightly higher unknown token rate (Ta-
ble 2), the difference is negligible (< 1.7% worst-
case) and easily mitigated via decoding constraints.
We therefore proceed with IndicTrans2.

4.1 Tag-Only Preprocessing

To minimize pipeline complexity and avoid brittle
external preprocessors for these under-resourced

Fertility (↓) Unknown tokens % (↓)

Language NLLB IndicTrans2 NLLB IndicTrans2

Bhili 1.73 1.45 0.02 0.03
Gondi 2.16 1.75 0.17 0.21
Mundari 2.56 2.16 0.42 0.50
Santali 3.07 1.44 0.00 1.69

Table 2: Backbone Analysis. Fertility scores (lower
is better) and unknown-token rates (lower is better) for
NLLB and IndicTrans2.

languages, we adopt a “tags-only” preprocessing
strategy. We avoid script unification or transliter-
ation. Instead, we condition the model purely via
tag prefixing (Johnson et al., 2017).

Each language ℓ ∈ L is associated with a fixed
tokenizer tag τ(ℓ) (e.g., τ(Hindi) = hin_Deva).
For extremely low-resource languages not origi-
nally supported by the tokenizer, we map them to
the closest available script-proxy tag. Specifically,
we map Bhili to mar_Deva (Marathi) as a surrogate
to leverage Devanagari script transfer.

For a source sentence x and direction d = (ℓs →
ℓt), we construct the model input

x̃ = [τ(ℓs), τ(ℓt), tokens(x)].

By consistently applying this formatting, we con-
vert all parallel data into a unified sequence-to-
sequence task, allowing joint training across all
directions simultaneously.

4.2 Base Model and Joint Fine-tuning
We initialize our model with IndicTrans2,
a Transformer-based encoder-decoder (Vaswani
et al., 2017) model pretrained on large-scale Indic
corpora. While IndicTrans2 is a strong baseline,
the specific domains and languages in this shared
task (e.g., Gondi, Mundari) are under-represented
in the pretraining data.

We treat the union of all available training data
D =

⋃
dDd as a single dataset. We fold the de-

velopment sets into the training data to maximize
the supervision available for the lowest-resource
directions. We fine-tune all model parameters θ
(initialized at pretrained weights θ0) via standard
token-level cross-entropy loss:

Lbase(θ) = −
∑

(x,y,d)∈D

1

|y|

|y|∑

t=1

log pθ(yt | y<t, x̃d)

(3)
where x̃d encodes the direction d via tags. This
stage produces a “generalist” base model θ⋆ that
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creates a strong baseline but may suffer from inter-
ference between conflicting translation directions
(e.g., translating into Devanagari vs. Ol Chiki
scripts).

4.3 Directional LoRA Adapters
To mitigate interference and allow specializa-
tion, we freeze the base model θ⋆ and introduce
direction-specific Low-Rank Adaptation (LoRA)
modules.

For a target module weight matrix W ∈ Rdout×din

(e.g., attention projections or FFN layers), we pa-
rameterize the update for direction d as:

Wd = W +
α

r
BdAd (4)

where r is the rank, Ad ∈ Rr×din , Bd ∈ Rdout×r,
and α is a scaling factor.

We create a separate bank of adapters {∆θd}
for each direction. During this stage, we freeze θ⋆

and optimize only the adapter parameters ∆θd and
the shared embeddings/LM head ϕ on the subset
of data Dd corresponding to that direction. This
results in a system where the backbone provides
shared linguistic knowledge, while the adapter de-
fines the specific mapping for a language pair.

5 Inference: Noisy-Channel Reranking

Standard beam search often yields generic or “safe”
translations, particularly in low-resource settings
where the model may hallucinate or default to copy-
ing the source script. To address this, we employ
a noisy-channel reranking approach (Pang et al.,
2022) that couples forward and reverse translation
models.

5.1 Candidate Generation and Scoring
Given a test input x and direction d = (τs → τt),
we first generate a set of K candidate translations
YK = {y(1), . . . , y(K)} using beam search with
the forward adapter ∆θd. We strictly constrain the
beam search to disallow the generation of the <unk>
token to prevent degenerate outputs in low-resource
target scripts.

We then score each candidate y(k) using two
components:

1. Forward Score: The log-probability of the
candidate given the source, using the forward
adapter ∆θd:

ℓfwd =
1

|y(k)| log p(y
(k) | x, d; ∆θd) (5)

2. Reverse Score: The log-probability of re-
constructing the source x given the candi-
date, using the reverse adapter ∆θd−1 (where
d−1 = τt → τs):

ℓrev =
1

|x| log p(x | y(k), d−1; ∆θd−1) (6)

Both scores are computed via batched teacher forc-
ing.

5.2 Reranking Objective
The final translation ŷ is selected by maximizing a
weighted combination of these scores:

ŷ = argmax
y(k)∈YK

[α · ℓfwd + β · ℓrev] (7)

In our experiments, we set α = 1.0 and β = 1.0.
The reverse term acts as a regularizer: it penalizes
candidates that are fluent (high forward probability)
but semantically drifted such that the source cannot
be reconstructed.

Finally, we apply a lightweight script-aware post-
processing step to normalize punctuation and re-
move artifacts (e.g., spacing before Danda or Ol
Chiki punctuation) introduced by the tokenizer.

6 Experimental Setup

6.1 Training Details
We trained the base model for 300k steps with a
learning rate of 2e-5, using mixed precision (BF16)
and a batch size of 44. For the LoRA stage, we
used a rank r = 64, α = 128, and dropout 0.1.
We targeted all linear layers in the attention and
feed-forward blocks along with training the base
model’s embedding and output head while training
for 50k steps.

7 Results

Table 3 presents the performance of our system
on the shared task leaderboard. We compare two
model sizes (360M and 1.1B) across three stages of
our pipeline: the fine-tuned baseline, the addition
of Directional Adapters (MultiLoRA), and the final
Noisy-Channel Reranking (Backloss).

Impact of Directional Adapters For the 1.1B
model, Directional LoRA adapters give a +13.9
point increase in the Public score. This validates
our hypothesis that low-resource languages bene-
fit from dedicated parameter spaces that are iso-
lated from the interference of other translation di-
rections. Notably, our 360M model with adapters
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Figure 1: Final Results Left: Public Scores (higher is better), showing a steady increase in performance across
both model sizes with the 3 stages (Finetuning, Multi-LoRA adaptation, Noisy Channel Reranking). Right: Private
Scores. Showing a similar trend in performance gains

Model Configuration Public Private
Small Variant (360M)
IndicTrans2-360M (FT Baseline) 304.41 197.44

+ Directional Adapters 312.75 201.04
+ Noisy-Channel Reranking 314.30 202.18

Large Variant (1.1B)
IndicTrans2-1.1B (FT Baseline) 305.03 199.20

+ Directional Adapters 318.94 210.00
+ Noisy-Channel Reranking 319.39 212.04

Table 3: Main Results. Comparison of Public and
Private leaderboard scores. Our proposed methods yield
consistent improvements across model sizes. The 1.1B
model with full pipeline achieves the winning score.

(312.75) significantly outperforms the much larger
1.1B baseline (305.03), highlighting the efficiency
of this approach.

Impact of Noisy-Channel Reranking The addi-
tion of noisy-channel reranking provides a consis-
tent final boost (+0.45 to +1.55 points). While the
magnitude is smaller than the LoRA step, this re-
ranking method is a cheap and consistent method
to improve MT performance.

8 Conclusion

We presented our winning submission to the MM-
LoSo shared task. By combining a strong pre-
trained backbone (IndicTrans2) with a unified
“tags-only” preprocessing scheme, we established
a robust baseline. We then introduced Directional
LoRA Adapters to resolve interference between

diverse scripts and Noisy-Channel Reranking to
ensure semantic fidelity. Our results demonstrate
that even in the era of massive multilingual mod-
els, task-specific modular adaptation and rigorous
decoding strategies remain essential for achieving
state-of-the-art performance in low-resource Indic
languages.

9 Limitations

The proposed system remains constrained by the
IndicTrans2 tokenizer and vocabulary. Coverage of
low-resource scripts (in particular Ol Chiki for San-
tali and the surrogate tag used for Bhilli) is incom-
plete, which leads to fragmented subword segmen-
tations and occasional out-of-vocabulary symbols.
Decoding-time constraints such as banning <unk>
partially mitigate their impact on automatic met-
rics, but do not recover missing characters and can
still yield approximate or distorted surface forms
for rare words and named entities.

The training and tuning setup is tightly coupled
to the shared-task configuration. The base model is
deliberately saturated on the full training data, and
several hyperparameters (e.g., beam size, noisy-
channel weights) are selected using subsets of the
same data or leaderboard feedback, rather than a
clean held-out validation set.

Finally, the architecture makes explicit trade-
offs in efficiency and generality. Direction-specific
LoRA adapters scale linearly with the number of
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language pairs and require separate finetuning for
each direction, limiting zero-shot coverage. The
noisy-channel reranking scheme further increases
inference-time cost by requiring both forward and
reverse likelihoods for multiple candidates per
input, which may be impractical in latency- or
resource-constrained settings.
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Abstract - This paper presents a language-agnostic approach 

to neural machine translation for low-resource Indian tribal 

languages: Bhilli, Gondi, Mundari, and Santali. Developed 

under the constraint of zero proficiency in the source languages, 

the methodology relies on the cross-lingual transfer capabilities 

of two foundation models, NLLB-200 and mBART-50. The 

approach employs a unified bidirectional fine-tuning strategy to 

maximize limited parallel corpora. A primary contribution of 

this work is a smart post-processing pipeline and a 

"conservative ensemble" mechanism. This mechanism 

integrates predictions from a secondary model specifically as a 

safety net to mitigate hallucinations and length-ratio artifacts 

generated by the primary model. The approach achieved a 

private leaderboard score of 179.49 in the MMLoSo 2025 

Language Challenge. These findings demonstrate that effective 

translation systems for underrepresented languages can be 

engineered without native linguistic intuition by leveraging 

data-centric validation and the latent knowledge within massive 

multilingual models. 

Keywords - Low-Resource NMT, Cross-Lingual Transfer, 

NLLB, mBART, Ensemble Learning, Data-Centric AI, Indic 

Languages 

I. INTRODUCTION 

The digital divide significantly impacts low-resource 
languages. This issue is particularly acute in India [1,2] where 
a vast linguistic diversity exists alongside a scarcity of 
digitized resources for tribal languages [1, 3]. Such languages 
include Bhilli, Gondi, Mundari, and Santali [4, 5]. While high-
resource languages like Hindi and English benefit from 
mature Neural Machine Translation (NMT) systems, these 
tribal languages lack the massive annotated corpora required 
for training standard models [1]. 

A significant barrier to developing NMT systems for these 
languages is the requirement for linguistic expertise to 
validate quality. This paper explores a data-centric 
methodology designed to overcome this barrier. The core 
hypothesis is that massive multilingual models (MMTs) pre-
trained on large language corpora possess sufficient latent 
knowledge of the Devanagari script and Indo-Aryan language 
structures to generalize to unseen related languages. 

This study details the adaptation of Meta's No Language 
Left Behind (NLLB) [4] and mBART [5] models. The 
approach focuses on three technical pillars: unified 
bidirectional training to increase data density, heuristic-based 
normalization to correct script errors, and a conservative 
ensemble strategy to detect catastrophic model failures [6]. 
This methodology secured 5th place in the MMLoSo 2025 
challenge that was hosted on Kaggle between October 29, 
2025 to November 15, 2025. The methodology provides a 

framework for developing NMT systems in the absence of 
native language proficiency. 

II. METHODOLOGY 

A. Unified Bidirectional Training 

Low-resource NMT often suffers from data sparsity. The 
available dataset provided approximately 20,000 sentence 
pairs per language direction. To address this, a unified training 
strategy was adopted. All source-to-target and target-to-
source pairs were then concatenated into a single dataset 
(Dunified). This aggregation serves two purposes. First, it 
doubles the effective number of training steps available to the 
model. Second, it forces the model to map all six languages 
(Hindi, English, Bhilli, Gondi, Mundari, Santali) into a shared 
embedding space which facilitates positive transfer between 
related languages. 

B. Tokenization and Warm-Start Initialization 

The NLLB tokenizer was utilized for the primary model. 
However, a critical challenge in adapting MMTs to new 
languages was the handling of language-specific tokens. 
Bhilli, Gondi, and Mundari share the Devanagari script with 
Hindi [7, 9]. To accelerate convergence, the embeddings for 
these new language tokens (e.g., __𝑏ℎ𝑖𝑙𝑙𝑖_𝐷𝑒𝑣𝑎__) were not 
initialized randomly. Instead, they were initialized using the 
pre-trained weights of the Hindi language token (ℎ𝑖𝑛_𝐷𝑒𝑣𝑎). 
Similarly, Santali, which uses the Ol Chiki script [8], was 
initialized using weights from the closest available linguistic 
representation in the pre-trained model. 

C. Language Token Extension 

Four custom language tokens as additional special tokens: 

__bhilli_Deva__,\__gondi_Deva__,\ __mundari_Deva__,\ 

__sat_Olck__ 

 
Existing NLLB codes for Hindi and English were used, and 
new ones for low-resource languages added. 

 

Figure 1: Language code mapping for NLLB 
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Token embeddings were then initialized with Hindi 

embeddings (for Devanagari-script languages) to leverage 

linguistic similarity. 

D. Model Architectures and Fine-Tuning 

Two distinct architectures were fine-tuned to create a 
diverse pool of predictions. 

• NLLB-200-distilled-600M: This model served as 
the primary generator due to its strong zero-shot 
performance on Indic languages. Training utilized 
the Adafactor optimizer with a learning rate of       1𝑒 − 4,  a linear warmup of 1,000 steps, and a total 
duration of 25,000 steps. 

• mBART-large-50: This model served as a 
secondary system. While mBART typically yields 
lower evaluation scores than NLLB for this specific 
task, experiments indicated that its failure modes 
were distinct. It tended to be more robust against the 
generation of empty strings or infinite repetition 
loops. 

Both models were trained using Standard Cross-Entropy 
Loss with label smoothing (𝜖 = 0.1 ) to mitigate 
overfitting on the small dataset. 

 

III. POST-PROCESSING AND CONSERVATIVE ENSEMBLE 

Developing NMT systems without knowledge of the target 
language requires rigorous heuristic validation to ensure 
quality. This work introduces a pipeline designed to filter 
artifacts and mitigate "catastrophic generation" errors. 

A. Artifact Cleaning 

A regex-based cleaning module was applied to the raw 
outputs. 

• Token Removal: Leaked control tokens (e.g., __𝑏ℎ𝑖𝑙𝑙𝑖_𝐷𝑒𝑣𝑎__) were systematically stripped. 

• Script Normalization: Spacing anomalies specific 

to the Devanagari Danda (।) were corrected. The 

system enforces a space before the Danda to align 
with standard orthography. 

• Repetition Suppression: Low-resource models 
frequently enter repetition loops. An algorithmic 
check identifies sequences where a token repeats 

more than three times and truncates the generation at 
the onset of the loop. 

 

B. Conservative Ensemble (Safety Net) 

Standard ensembling averages logits from multiple 
models. However, given the performance disparity 
between NLLB and mBART, simple averaging often 
degrades the superior model's output. Instead, this study 
implements a "Conservative Ensemble" logic. 

Let 𝑇_𝑁𝐿𝐿𝐵 be the translation from the primary model and 𝑇_𝑚𝐵𝐴𝑅𝑇 be the translation from the secondary model. Let 𝑅 be the length ratio between the translation and the source 

sentence ( 𝑙𝑒𝑛(𝑇)/𝑙𝑒𝑛(𝑆)𝑙𝑒𝑛(𝑇)/𝑙𝑒𝑛(𝑆)).  

 𝑇_𝑁𝐿𝐿𝐵 is replaced by 𝑇_𝑚𝐵𝐴𝑅𝑇 only if specific failure 

criteria are met: 

• Under-generation: 𝑅_𝑁𝐿𝐿𝐵 <0.3 𝑅_𝑁𝐿𝐿𝐵 < 0.3 

(indicating potential text drop) AND the mBART 

output is longer. 

• Over-generation: R_NLLB > 3.0 R_NLLB > 3.0 

(indicating potential hallucination) AND the 

mBART output is shorter. 

• Validity Constraint: The replacement is only 

executed if T_mBART falls within a statistically 

safe length ratio window (0.3 ≤ R ≤ 3.0).  
 

This logic treats the secondary model strictly as a 

fallback mechanism for edge cases where the primary 

model exhibits catastrophic failure. 

IV. EXPERIMENTS AND RESULTS 

The models were evaluated using the competition metric 

which is a weighted combination of BLEU and chrF scores. 

Table 1: Comparative Performance on MMLoSo 2025 

Leaderboard. 

Model Configuration Public Score Private Score 

mBART-50 (Baseline) 183.82 156.29 

NLLB-200 (Raw Output) 211.50 174.01 

NLLB + Cleaning + 
Conservative Ensemble 

216.04 179.49 

 

The results in Table 1 quantify the contribution of each 
component. The raw NLLB model significantly outperformed 
mBART (+17.7 points on the Private Score). This validates 
the hypothesis that NLLB's pre-training on 200 languages 
provides superior transfer learning for Indic tribal languages 
compared to mBART's 50 languages. 

However, the post-processing and conservative ensemble 
provided a critical improvement of +5.48 points. An analysis 
of the replaced samples revealed that the ensemble primarily 
corrected instances where NLLB failed to generate the correct 
script (e.g., outputting Latin characters for Santali) or 
generated empty sequences. This highlights that while fine-
tuning aligns the model with the domain, heuristic constraints 
are essential for robustness in low-resource settings. 

 

Figure 2: Training loss trajectory of the NLLB-200 fine-tuning 

process. 
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V. CONCLUSION 

This paper demonstrates that competitive NMT systems 
for low-resource languages can be developed without native 
speaker proficiency. By fine-tuning NLLB-200 and mBART 
on a unified bidirectional dataset and implementing a 
conservative ensemble strategy, this approach achieved state-
of-the-art results for the Bhilli, Gondi, Mundari, and Santali 
translation tasks. The success of this language-agnostic 
approach suggests that future work in low-resource NLP 
should prioritize model robustness and automated failure 
detection alongside standard metric optimization. This 
methodology provides a replicable framework for 
democratizing access to translation technologies for 
underserved linguistic communities. 

ACKNOWLEDGMENT 

Thanks to Lifeng Han, Gleb Erofeev, Irina Sorokina, 
Serge Gladkoff, and Goran Nenadic for their comprehensive 
publication on massive multilingual pre-trained machine 
translation models via transfer learning [7]. Special to the 
MMLoSo 2025 organizers for hosting this challenge as well 
as providing high-quality parallel corpora. Also, thanks to the 
Meta AI team for open-sourcing the NLLB-200 models. This 
work was conducted independently using Kaggle and Google 
Colab's computational resources. 

REFERENCES 

[1] P. Koehn and R. Knowles, "Six Challenges for Neural Machine 
Translation," First Workshop on Neural Machine Translation, 
2017. 

[2] NLLB Team, et al., "No Language Left Behind: Scaling 
Human-Centered Machine Translation," arXiv preprint 
arXiv:2207.04672, 2022. 

[3] Y. Tang et al., "Multilingual Translation with Extensible 
Multilingual Pretraining and Finetuning," arXiv preprint 
arXiv:2008.00401, 2020. 

[4] Meta AI (2022). "No Language Left Behind: Scaling Human-
Centered Machine Translation." arXiv:2207.04672 

[5] Liu Y, Gu J, Goyal N, Li X, Edunov S, Ghazvininejad M, 
Lewis M, Zettlemoyer L. Multilingual denoising pre-training 
for neural machine translation. Transactions of the Association 
for Computational Linguistics. 2020 Nov 1;8:726-42. 

[6] Vaswani et al. (2017). "Attention Is All You Need." NeurIPS. 

[7] Han L, Erofeev G, Sorokina I, Gladkoff S, Nenadic G. 
Investigating massive multilingual pre-trained machine 
translation models for clinical domain via transfer learning. In 
Proceedings of the 5th clinical natural language processing 
workshop 2023 Jul (pp. 31-40). 

[8] Choksi N. Scripting the border: script practices and territorial 
imagination among Santali speakers in eastern India. 
International Journal of the Sociology of Language. 2014 May 
1;2014(227).  

[9] Buscaldi D, Rosso P. How Good is NLLB for Low-resource 
Languages? A Study on the Genoese Language. In Proceedings 
of the 9th Italian Conference on Computational Linguistics 
(CLiC-it 2023) 2023 Nov (pp. 490-493). 

[10] Umishov AV, Grigorian VA. The first open machine 
translation system for the Chechen language. arXiv preprint 
arXiv:2507.12672. 2025 Jul 16. 

[11] MMLoSo2025. MMLoSo 2025. 
https://kaggle.com/competitions/mm-lo-so-2025, 2025. 
Kaggle.  

 

 

 

 

108



Proceedings of MMLoSo 2025: First Workshop on Multimodal Models for Low-Resource Contexts and Social Impact, pages 109–113
December 23, 2025 ©2025 Association for Computational Linguistics

Challenge Track: Divide and Translate: Parameter Isolation with Encoder
Freezing for Low-Resource Indic NMT

Vaibhav Kanojia
Delhi Technological University (DTU)

New Delhi, India
vaibhavkanojia3773@gmail.com

Abstract
We present a Divide and Translate framework
for low-resource Indic machine translation, tar-
geting tribal languages such as Bhili, Gondi,
Mundari, and Santali. Rather than fine-tuning
a single unified multilingual model, which of-
ten suffers from negative transfer on extremely
small and morphologically diverse datasets,
we train direction-specific NLLB-600M mod-
els with an encoder-freezing strategy. This
preserves pre-trained cross-lingual representa-
tions while allowing the decoder to specialize
in target-specific syntax. Our pipeline incor-
porates bi-directional data augmentation, effi-
cient batching, and mixed-precision training
to maximize performance under constrained
resources. Experiments demonstrate that
parameter-isolated models consistently outper-
form unified fine-tuning baselines in BLEU
and chrF metrics, providing a practical, re-
producible, and compute-efficient solution for
translating under-resourced languages.

1 Introduction

The linguistic landscape of India is characterized
by immense diversity, yet the digital footprint of its
tribal and indigenous languages remains critically
small. Languages such as Bhili, Gondi, Mundari,
and Santali; spanning the Austroasiatic and Dra-
vidian families, exhibit complex agglutinative mor-
phology and syntactic structures (e.g., SOV word
order) that diverge significantly from high-resource
Indo-Aryan languages like Hindi. Developing ro-
bust Neural Machine Translation (NMT) for these
languages is a prerequisite for digital inclusion,
yet it is hampered by extreme data scarcity, often
limited to a few thousand parallel sentences.

This paper addresses the translation task pro-
posed by the MMLoSo 2025 Shared Task1. A
prevailing trend in modern NMT is the use of mas-
sive Unified Multilingual Models (e.g., NLLB,

1https://www.kaggle.com/competitions/
mm-lo-so-2025

Figure 1: The ‘Divide and Translate’ Architecture. The
shared encoder is frozen to preserve multilingual align-
ment, while separate, direction-specific decoders are
fine-tuned to capture target language morphology.

IndicTrans), which share parameters across hun-
dreds of languages (Team et al., 2022). However,
we hypothesize that in ultralow-resource regimes
(N ≈ 20k) involving linguistically distinct gram-
mars, the shared parameter space induces negative
transfer, where the model overfits to the dominant
high-resource syntax at the expense of the target
tribal language’s fidelity.

To mitigate this, we propose a “Divide and
Translate” framework (Figure 1). Instead of a
unified model, we treat each translation direction
as a distinct downstream task. We adapt the NLLB-
600M backbone by freezing the encoder to pre-
vent catastrophic forgetting of source representa-
tions, while training separate, specialized decoders
for each target language. This forces the model to
act as a morphological adapter, learning to gener-
ate complex target syntax without corrupting the
source language understanding.

Our contributions are as follows:

• We empirically demonstrate that Parameter
Isolation (separate experts) yields superior
translation fidelity compared to unified base-
lines for divergent language pairs.

• We validate Encoder Freezing as an effective
regularization technique to prevent overfitting
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in small data sets (< 20k).

• We present a reproducible, memory-
optimized pipeline (using BFloat16 and
Gradient Checkpointing) that enables full-
parameter fine-tuning on consumer-grade
hardware.

2 Related Work

Low-resource neural machine translation (NMT)
remains challenging due to limited parallel data,
morphological diversity, and unstable optimization.
Prior work shows that transfer learning, multilin-
gual joint training, and back-translation can sub-
stantially improve performance for severely under-
resourced languages (Guzmán et al., 2019; Fan
et al., 2020). Large multilingual encoders such
as XLM-R, M2M-100, and NLLB-200 demon-
strate strong cross-lingual generalization and scal-
ing benefits (Conneau et al., 2020; Fan et al., 2020;
Team et al., 2022). However, massively multi-
lingual models also suffer from capacity dilution
and negative transfer, where high-resource or ty-
pologically distant languages interfere with low-
resource ones (Aharoni et al., 2019; Wang et al.,
2020). These findings motivate direction-specific
or modular approaches that reduce interference dur-
ing fine-tuning.

Parameter-efficient and modular adaptation
methods have been widely explored to address
catastrophic forgetting and overfitting in low-
resource settings. Adapters (Houlsby et al., 2019;
Pfeiffer et al., 2020), AdapterFusion (Pfeiffer et al.,
2021), and LoRA-based approaches (Hu et al.,
2021) allow specialization without updating the
full model. Similarly, freezing the encoder or se-
lectively tuning specific layers stabilizes multilin-
gual NMT and preserves shared representations
(Bapna et al., 2019; Zhang et al., 2021). These
methods highlight the value of isolating language-
or direction-specific parameters instead of fully up-
dating the underlying multilingual model.

For Indic languages, recent efforts such as In-
dicTrans2 and AI4Bharat’s Indic ecosystems have
significantly improved translation quality through
linguistically informed tokenization, script normal-
ization, and multilingual transfer (Gala et al., 2023;
Doddapaneni et al., 2023). The NLLB project fur-
ther shows that large-scale multilingual models
can yield strong results even for many underrepre-
sented Indo-Aryan and Dravidian languages (Team
et al., 2022). Despite this progress, extremely

low-resource Indic and tribal languages still suffer
from sparse parallel corpora, orthographic varia-
tion, and weak cross-lingual alignment. Our work
aligns with these efforts but focuses specifically on
direction-specific fine-tuning to reduce negative
transfer and stabilize training under extreme data
scarcity.

3 Experimental Setup

3.1 Datasets
We conduct all experiments on the MMLoSo
2025 Shared Task dataset, spanning translation
between high-resource languages (English, Hindi)
and four low-resource tribal languages: Bhili,
Gondi, Mundari, and Santali. Each direction con-
tains approximately 20,000 parallel sentence pairs.
The corpus is heterogeneous, exhibiting ortho-
graphic inconsistencies (mixed Latin/Devanagari
scripts) and code-switching, typical of web-scraped
low-resource data.

3.2 Data Preparation
To mitigate noise without over-filtering, we imple-
mented a strict preprocessing pipeline:

• Lexical Normalization: We applied NFKC
Unicode normalization to canonicalize dis-
tinct codepoints for Indic nuktas and matras,
followed by Moses punctuation normaliza-
tion.

• Leakage-Proof Splitting: We performed a
stratified 95/5 train-validation split prior to
augmentation. This ensures that synthetic
reverse-pairs of validation sentences never
leak into the training set.

• Tokenization: We utilized the pre-trained
NLLB SentencePiece tokenizer (V = 256k)
to maximize vocabulary sharing across lin-
guistically related pairs (Team et al., 2022).

3.3 Data Augmentation
Given the extremely small size of the available
parallel corpora, we applied a simple yet effective
Bitext Reversal Augmentation strategy. For ev-
ery parallel sentence pair (x, y) in the training set
where x is the source sequence and y is the target
we generated a reverse pair (y, x) by swapping both
the language tags and the sentence fields. This dou-
bled the effective training size from approximately
80k to 160k sentence pairs.

This augmentation serves two key purposes:
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1. Regularization: Exposing the encoder to
tribal-language text on the source side im-
proves robustness to orthographic variation
and code-switched inputs that are common in
low-resource Indic languages.

2. Directional Symmetry: The reversed pairs
enable all eight translation directions (e.g.,
Hindi↔Gondi) to be trained from the same
underlying bitext, yielding balanced supervi-
sion for the direction-specific decoders in our
expert architecture.

We emphasize that this method does not intro-
duce any hallucinated content; it merely reuses au-
thentic bitext in a reversed configuration, making
it well-suited for ultra-low-resource tasks where
synthetic generation may amplify noise.

3.4 Model Architecture
Our system adapts the NLLB-200-Distilled-600M
backbone (Team et al., 2022). To balance plasticity
with stability, we employed a Partial Freezing
strategy:

• Frozen Encoder: We froze the 300M+ pa-
rameter encoder (∇θenc = 0). This preserves
the robust, high-resource multilingual repre-
sentations learned during pre-training.

• Specialized Decoders: We fine-tuned the de-
coder exclusively for each direction. This
forces the model to act as a morphological
adapter, utilizing the frozen encoder’s seman-
tic features to generate target-specific syntax
(e.g., SOV structures for Santali).

3.5 Training Configuration
To demonstrate accessibility, all models were
trained on a single consumer-grade NVIDIA T4
GPU (16GB VRAM).

• Optimizer: AdamW (β1 = 0.9, β2 =
0.999, ϵ = 1e− 8).

• Learning Rate: 2e − 5 with a linear decay
scheduler and 10% warmup steps.

• Memory Optimization: To fit the full de-
coder fine-tuning into 16GB VRAM, we uti-
lized BFloat16 precision, Gradient Check-
pointing (Chen et al., 2016), and Gradi-
ent Accumulation (micro-batch=4, accumu-
lation=4) to achieve a stable effective batch
size of 16.

• Inference: Beam search with a beam size of
5 (Och and Ney, 2004).

4 Results and Analysis

4.1 Quantitative Performance
Table 1 presents the official evaluation results from
the MMLoSo Shared Task leaderboard. Our Divide
and Translate system achieved a Public Score of
171.4 and a Private Score of 161.1.

A key observation is the system’s generaliza-
tion stability. The performance drop between the
Public (validation) and Private (blind test) sets is
less than 6%. In low-resource multilingual settings,
leaderboard-driven overfitting is common, but our
stability indicates that the Encoder Freezing and
Stratified Splitting protocols effectively prevented
memorization of superficial artifacts.

Metric Public Score Private Score
Aggregate Score† 171.4 161.1

Table 1: Official Shared Task Results. Weighted ag-
gregate score computed as 0.6 × BLEU + 0.4 × chrF.
The minimal gap between Public and Private scores
demonstrates strong robustness to unseen domains.

Evaluation Metrics: The exact BLEU/chrF
scores for each translation direction are not released
by the shared-task organizers. The leaderboard pro-
vides only a single aggregated weighted score in
all directions. Therefore, we report the official
weighted score as the primary metric.

4.2 Architectural Analysis
To evaluate the effectiveness of our design choices,
we analyzed alternative model configurations ex-
plored during development. Table 2 summarizes
their main limitations relative to our final system.

Strategy Constraint Primary Failure Mode
Unified Full FT Optimization Gradient Conflict (SVO / SOV)
IndicTrans2 (SOTA) Domain Hallucination, Low Recall
LoRA Adapters Structural Weak Morphological Modeling
Ours (Frozen Encoder) None Stable Convergence

Table 2: Qualitative Comparison of Modeling Strate-
gies. Unified models suffered from conflicting optimiza-
tion signals. Our isolated expert configuration achieved
higher stability and linguistic fidelity.

Impact of Parameter Isolation vs. Unified Archi-
tectures: The Unified Full Fine-Tuning strategy
failed to converge optimally across all directions
due to gradient interference. English follows an
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SVO (Subject–Verb–Object) word order, while
Santali and Gondi follow SOV (Subject–Object–
Verb) order. Forcing a single decoder to satisfy
both syntactic patterns creates conflicting optimiza-
tion signals. The unified model consequently grav-
itates toward high-resource syntactic distributions,
degrading grammatical fidelity in low-resource
tribal languages. Our isolated decoders remove
this conflict and allow each expert to specialize
fully.

Qualitative Evidence of Hallucination Stability:
Note that the IndicTrans2 entries referenced above
are models we fine-tuned during development using
LoRA (and DoRA when enabled). Despite careful
tuning, these LoRA-finetuned IndicTrans2 models
often produced strong hallucination behaviours on
the noisy MMLoSo data (repetition loops, mixed-
script drift, and semantic loss). By contrast, our
NLLB-based direction-specific experts (with en-
coder freezing) produced substantially cleaner and
more faithful outputs.

Raw textual examples from IndicTrans2 contain
many non-ASCII tribal morphemes and render-
ing artifacts that break LaTeX compilation. To
present the failures unmodified we therefore in-
clude screenshot-based evidence comparing the
two systems.

Figure 2: IndicTrans2 (LoRA fine-tuned) example
hallucination. Note morpheme repetition, script mixing
and semantic drift. Screenshot preserves original UTF-8
tokens that cause LaTeX rendering issues.

Figure 3: Our NLLB expert (encoder frozen) corre-
sponding translation. The output is semantically consis-
tent, preserves meaning, and avoids the repetition and
script drift seen in the IndicTrans2 output.

These side-by-side visual examples support our
claim that LoRA-finetuned IndicTrans2 struggles
under heavy noise and typological shift, while
encoder-freezing with direction-specific decoders

yields greater morphological fidelity and robust-
ness.

5 Conclusion

We introduced Divide and Translate, a
specialization-based framework for ultra-
low-resource translation in the MMLoSo 2025
Shared Task. Our experiments show that when
data is scarce and grammars diverge, isolated
expert models outperform unified multilingual
fine-tuning. Parameter isolation mitigated
negative transfer across conflicting source–target
structures, and Encoder Freezing provided a
strong regularization signal that preserved multi-
lingual alignment while enabling morphological
adaptation.

Although maintaining multiple experts increases
storage cost, we find this trade-off acceptable for
tasks centered on language preservation and fi-
delity. Future work will explore knowledge dis-
tillation to compress these experts into a single
efficient model while retaining the benefits of spe-
cialization.

Ethical Considerations

Our work aims to support the digital inclusion of
under-resourced tribal languages using only the
publicly released MMLoSo dataset, without col-
lecting any sensitive or private data. However, MT
systems especially those adapted from large multi-
lingual models may produce biased or hallucinated
outputs that can misrepresent cultural knowledge
or affect users in high-stakes settings. To mitigate
this, we recommend using the system strictly as
an assistive tool with human oversight, particularly
for domains such as healthcare or legal communi-
cation. Moreover, because the dataset lacks exten-
sive community verification, future work should
involve native speakers to ensure linguistic fidelity
and avoid unintentional misrepresentation.
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Abstract
This paper describes JHARNA-MT, a sys-
tem designed for the MMLoSo 2025 Shared
Task. The competition focuses on translating
between high-resource languages (Hindi, En-
glish) and low-resource tribal languages (Bhili,
Gondi, Mundari, Santali). Our analysis re-
vealed significant challenges including data
sparsity and morphological richness. To ad-
dress these, we propose a hybrid pipeline in-
tegrating Non-Parametric Retrieval, Statistical
Machine Translation (SMT), and Neural Ma-
chine Translation (NMT) fine-tuned with Low-
Rank Adaptation (LoRA). We employ Mini-
mum Bayes-Risk (MBR) decoding to select
the consensus hypothesis from a diverse candi-
date pool. Our system achieved a final score of
186.37, securing 2nd place on the leaderboard.

1 Introduction

India is home to over 700 languages, yet many
tribal languages remain severely under-resourced,
lacking the large-scale parallel corpora needed for
modern Neural Machine Translation (NMT). The
MMLoSo 2025 Shared Task (MMLoSo Organizers,
2025) addresses this gap by fostering translation
systems between high-resource languages (Hindi,
English) and four low-resource tribal languages:
Bhili, Gondi, Mundari, and Santali.

These languages pose three key challenges: (1)
morphological richness—Mundari’s Type-Token
Ratio (0.222) is double that of Hindi (0.107), caus-
ing severe vocabulary sparsity; (2) structural di-
vergence—Hindi-Bhili shows near-perfect isomor-
phism (r > 0.9) while English-Santali exhibits
substantial differences due to agglutinative mor-
phology; (3) lexical redundancy in government
texts, enabling retrieval-based approaches.

Prior approaches to low-resource translation
have largely relied on multilingual transfer learn-

ing (Costa-jussà et al., 2022) and synthetic data
generation (Sennrich et al., 2016). However, pure
NMT systems often suffer from hallucinations
when training data is scarce. Conversely, tradi-
tional SMT models (Brown et al., 1993), while less
fluent, offer better lexical fidelity.

We propose a hybrid pipeline combining: (1)
Retrieval-Augmented Generation (RAG) for do-
main redundancy, (2) Statistical MT (SMT) with
diagonal alignment priors for robust literal trans-
lations, and (3) Neural MT via LoRA-adapted
NLLB-200. We employ Minimum Bayes-Risk
(MBR) decoding to select consensus hypotheses,
mitigating complementary error modes of SMT
and NMT.
Our contributions include: (1) linguistic analysis re-
vealing heterogeneous challenges across pairs, (2) a
novel hybrid ensemble under a unified MBR frame-
work, and (3) ablation studies achieving 186.37 on
the private leaderboard (2nd place).

2 Dataset Analysis and Linguistic
Implications

We conducted a comprehensive exploratory anal-
ysis of the MMLoSo 2025 dataset to understand
the linguistic barriers inherent in each translation
direction. Table 1 summarizes key statistics that
guided our modeling decisions.

2.1 Syntactic Isomorphism vs. Divergence

Hindi-Bhili and Hindi-Gondi pairs exhibit strong
linear correlation in sentence length (r > 0.9) with
length ratios near 1.0, indicating high syntactic
isomorphism. This structural similarity explains
why alignment-based SMT models perform com-
petitively on these pairs—word-to-word alignment
is relatively straightforward.
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Pair TTR Len Vocab Ratio

Hindi 0.095 21.3 40.4K –
Bhili 0.155 21.6 67.0K 1.03

Hindi 0.086 14.4 24.6K –
Gondi 0.162 13.8 44.8K 0.99

Hindi 0.107 16.3 35.1K –
Mundari 0.222 14.2 63.2K 0.91

English 0.118 16.5 39.1K –
Santali 0.116 19.3 44.8K 1.18

Table 1: Key statistics of the MMLoSo 2025 dataset
across all language pairs. TTR = Type-Token Ratio,
Len = Avg sentence length (tokens), Vocab = Vocabulary
size, Ratio = Target/Source length ratio.

Conversely, the English-Santali pair demon-
strates significant structural divergence, with
Santali sentences averaging 18% longer than En-
glish. This expansion stems from Santali’s aggluti-
native morphology, where grammatical functions
expressed by separate words in English are real-
ized as affixes in Santali. We adjusted the length
penalty parameter (α = 1.2) in beam search de-
coding specifically for this pair to mitigate under-
generation.

2.2 Morphological Richness and Data
Sparsity

Mundari exhibits extreme morphological richness
(TTR = 0.222), more than double that of source
Hindi (0.107). This high TTR indicates that a sin-
gle semantic concept surfaces in many distinct in-
flected forms, leading to severe data sparsity. To
address this, our methodology incorporates: (1)
subword tokenization via SentencePiece (Kudo and
Richardson, 2018) to decompose complex aggluti-
nated words, and (2) iterative back-translation (Sen-
nrich et al., 2016) to artificially boost the frequency
of rare morphological variants.

3 Proposed Methodology

To address the challenges of data sparsity and struc-
tural divergence, we propose a hybrid translation
pipeline that integrates Non-Parametric Retrieval,
Statistical Machine Translation (SMT), and Neu-
ral Machine Translation (NMT) under a Minimum
Bayes-Risk (MBR) decision framework.

3.1 Retrieval-Augmented Generation (RAG)

Government and administrative texts exhibit high
lexical redundancy. We exploit this via a two-tier
retrieval module:

Exact Match. For a test source sentence x, if
x ∈ Dtrain, we directly retrieve its gold translation
y∗ from the training corpus. This deterministic
lookup handles approximately 8% of test instances
with perfect accuracy.

Fuzzy Match. For sentences not found exactly,
we employ a conservative fuzzy matching algo-
rithm. Let norm(x) denote the normalized to-
kenized representation (lowercased, punctuation-
separated). We retrieve y′ if ∃(x′, y′) ∈ Dtrain

such that:

norm(x) = norm(x′) ∧ ||x| − |x′|| ≤ 1 (1)

This approach serves as a strong non-parametric
baseline, preventing generation errors on common
domain-specific phrases while maintaining high
precision.

3.2 The Hybrid Generator
For unseen sentences, we employ an ensemble of
two distinct paradigms to maximize coverage and
fidelity.

Statistical Component (SMT) We implement
an IBM Model 1 system (Brown et al., 1993)
with a diagonal alignment prior inspired by
fast_align (Dyer et al., 2013). The alignment prob-
ability is biased toward diagonal positions:

p(aj = i|f , e) ∝ t(fj |ei)·

exp

(
−λdiag ·

∣∣∣∣
j

|f | −
i

|e|

∣∣∣∣
)

(2)

where λdiag = 4.0 controls the strength of the
diagonal bias. We augment the training data via
iterative back-translation (Sennrich et al., 2016):
(1) train reverse models (e.g., Bhili→Hindi), (2)
generate synthetic source sentences, (3) retrain for-
ward models on the union of real and synthetic
data. This reduces sparsity for morphologically
rich languages.

We decode using beam search with a 3-gram
Kneser-Ney language model (Kneser and Ney,
1995), generating an N -best list (N = 5).
SMT provides “literal” translations that are robust
against NMT hallucinations.

Neural Component (NLLB-LoRA) We fine-
tune NLLB-200-Distilled-600M (Costa-jussà et al.,
2022) using Low-Rank Adaptation (LoRA) (Hu
et al., 2022) with rank r = 16, α = 32, targeting
all attention and feed-forward projections. Training
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Figure 1: Architecture of our Hybrid Retrieval-Augmented Ensemble. The system prioritizes exact retrieval for
domain consistency, falling back to a concurrent SMT-NMT generation ensemble unified by Minimum Bayes-Risk
(MBR) decoding for unseen inputs.

details: 1 epoch, AdamW optimizer (Loshchilov
and Hutter, 2019) (lr = 2e−4), batch size 32 (gra-
dient accumulation), 8-bit quantization (Dettmers
et al., 2022). We generate 10-best lists via beam
search (Freitag and Al-Onaizan, 2017) with length
penalty α = 1.2 for English-Santali (see Ap-
pendix B for full configuration).

Minimum Bayes-Risk (MBR) Reranking. To
select the highest quality translation from our candi-
date pool H = HSMT ∪HNLLB , we apply MBR
decoding (Kumar and Byrne, 2004; Eikema and
Aziz, 2020), which selects the hypothesis maximiz-
ing expected utility against all others. Following
the competition metric, we define utility as 0.6×
BLEU (Papineni et al., 2002) +0.4×chrF (Popović,
2015). This consensus-seeking approach effec-
tively filters out both SMT grammatical errors and
NMT hallucinations.

4 Results and Analysis

Main Results. Table 2 compares baselines and
our final hybrid system on the MMLoSo 2025
leaderboard (evaluation metric: 0.6×BLEU+0.4×
chrF).

Ablation Study. Table 3 quantifies each compo-
nent’s contribution.

Qualitative Analysis. To better understand the
improvements, we analyze a specific case from the
Hindi-Bhili test set (ID 54334) where the baseline
failed.

Case Study: Overcoming SMT Hallu-
cinations

Input (Hindi): unhone kaha ki 2014 ke baad...
(Gloss: He said that after 2014...)

Baseline (SMT): ki ki ki 2014. baad...
× Error: Severe stuttering and repetition at start.

Hybrid System: tinaye kedu ki 2014 ne baad...
✓ Correction: Fluent generation of "He said that".

Analysis. Key insights: (1) Complementary
error modes—SMT provides literal translations
but with grammatical errors; NMT produces flu-
ent output but hallucinates (public 302.08 vs pri-
vate 166.47 confirms overfitting). (2) MBR mit-
igates errors—consensus selection adds +8.06
points over NMT-only. (3) RAG excels in redun-
dant domains—contributes +11.84 points; exact
matches handle 8% of test data with perfect accu-
racy. (4) Post-processing is critical—script-aware
digit normalization adds +2.45 points for Indic lan-
guages.

5 Conclusion

We presented a hybrid translation system for the
MMLoSo 2025 Shared Task, achieving 2nd place
on the leaderboard with a score of 186.37. Our
comprehensive linguistic analysis revealed hetero-
geneous challenges across language pairs: syntac-
tic isomorphism (Hindi-Bhili/Gondi), structural di-
vergence (English-Santali), and extreme morpho-
logical richness (Mundari). To address these, we
proposed a novel pipeline combining Retrieval-
Augmented Generation, Statistical MT with diago-
nal alignment priors and back-translation, and Neu-
ral MT via LoRA-adapted NLLB-200. Minimum
Bayes-Risk decoding effectively synthesizes con-
sensus translations from diverse hypotheses, miti-
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Method Public Score Private Score

Baselines
Dice Coefficient (Lexical) 158.84 140.32
IBM Model 1 (SMT) 182.53 148.68

Intermediate Systems
SMT + Back-Translation + MBR 193.26 153.91
NLLB-LoRA (Neural Only) 302.08 166.47
NLLB-LoRA + SMT + MBR 306.56 174.53

Final Hybrid System 311.61 186.37

Table 2: Comparison of system performance. The Final Hybrid System includes RAG, Ensemble, and Post-
processing.

System Configuration Score

NLLB-LoRA only 166.47
+ SMT ensemble 170.21
+ MBR reranking 174.53
+ RAG (Exact Match) 180.14
+ RAG (Fuzzy Match) 183.92
+ Post-processing (Digit mapping) 186.37

Table 3: Ablation study showing incremental contribu-
tions.

gating complementary error modes.
Our ablation studies demonstrate that each com-

ponent contributes substantially: MBR improves
over NMT-only by +8 points, RAG adds +12
points, and post-processing contributes +2.5 points.
These results validate our hybrid design philosophy
and highlight the continued relevance of statistical
methods in low-resource NMT.

Future Work. Promising directions include:
(1) exploring iterative pseudo-labeling with
confidence-based filtering, (2) integrating subword-
level MBR to better handle morphological varia-
tion, (3) developing language-pair-specific adapters
to address structural heterogeneity, and (4) inves-
tigating cross-lingual transfer from related high-
resource languages (e.g., Marathi for Gondi).

Limitations

While our system achieves competitive perfor-
mance, several limitations warrant discussion:

Domain Specificity. Our RAG module exploits
the high redundancy in government/administrative
texts. Performance may degrade on out-of-domain
data (e.g., conversational text, literature) where
exact/fuzzy matches are less frequent.

Computational Cost. The hybrid pipeline re-
quires running both SMT and NMT inference,

increasing latency by approximately 2.5× com-
pared to NMT-only. This may limit deployment in
resource-constrained scenarios.

Error Propagation. The MBR reranking relies
on BLEU and chrF as utility functions. These met-
rics may not perfectly correlate with human judg-
ments, particularly for morphologically complex
languages where surface-form variation is high.

Language Coverage. Our analysis focuses on
four specific tribal languages. The generalizability
of our findings to other low-resource language pairs
(especially non-Indic languages) remains an open
question.

Ethical Considerations. Improving MT for
tribal languages has the potential to amplify both
beneficial (e.g., access to government services) and
harmful (e.g., loss of linguistic diversity) societal
impacts. Deployment should be conducted in con-
sultation with native speaker communities.

Acknowledgments

We would like to express our sincere gratitude to
the organizers of the MMLoSo 2025 Shared Task
for their tremendous efforts in curating the low-
resource datasets and hosting this competition. We
also thank the anonymous reviewers for their con-
structive feedback which helped improve the qual-
ity of this paper.

References
Peter F. Brown, Stephen A. Della Pietra, Vincent J.

Della Pietra, and Robert L. Mercer. 1993. The math-
ematics of statistical machine translation: Parameter
estimation. Computational Linguistics, 19(2):263–
311.

Marta R. Costa-jussà, James Cross, Onur Çelebi, Maha
Elbayad, Kenneth Heafield, Kevin Heffernan, Elahe

117

https://aclanthology.org/J93-2003
https://aclanthology.org/J93-2003
https://aclanthology.org/J93-2003


Kalbassi, Janice Lam, Daniel Licht, Jean Mail-
lard, Anna Sun, Skyler Wang, Guillaume Wen-
zek, Al Youngblood, Bapi Akula, Loic Barrault,
Gabriel Mejia Gonzalez, Prangthip Hansanti, John
Hoffman, and 19 others. 2022. No language left be-
hind: Scaling human-centered machine translation.
arXiv preprint arXiv:2207.04672.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. LLM.int8(): 8-bit matrix multi-
plication for transformers at scale. In Advances in
Neural Information Processing Systems (NeurIPS).

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameteriza-
tion of IBM Model 2. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT), pages 644–
648, Atlanta, Georgia. Association for Computational
Linguistics.

Bryan Eikema and Wilker Aziz. 2020. Is MAP decod-
ing all you need? the inadequacy of the mode in neu-
ral machine translation. In Proceedings of the 28th
International Conference on Computational Linguis-
tics (COLING), pages 4506–4520, Barcelona, Spain
(Online). International Committee on Computational
Linguistics.

Markus Freitag and Yaser Al-Onaizan. 2017. Beam
search strategies for neural machine translation. In
Proceedings of the First Workshop on Neural Ma-
chine Translation (NMT), pages 56–60, Vancouver,
Canada. Association for Computational Linguistics.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation
of large language models. In Proceedings of the In-
ternational Conference on Learning Representations
(ICLR).

Reinhard Kneser and Hermann Ney. 1995. Improved
backing-off for m-gram language modeling. In Pro-
ceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
volume 1, pages 181–184. IEEE.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 66–71, Brussels, Belgium. Association for
Computational Linguistics.

Shankar Kumar and William Byrne. 2004. Minimum
Bayes-risk decoding for statistical machine transla-
tion. In Proceedings of the Human Language Tech-
nology Conference of the North American Chapter of
the Association for Computational Linguistics (HLT-
NAACL), pages 169–176, Boston, Massachusetts. As-
sociation for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In Proceedings of the
International Conference on Learning Representa-
tions (ICLR).

MMLoSo Organizers. 2025. MMLoSo 2025 shared
task: Multimodal models for low-resource con-
texts and social impact. https://www.kaggle.com/
competitions/mmloso2025. To appear.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pages 311–318, Philadel-
phia, Pennsylvania. Association for Computational
Linguistics.
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A Detailed System Architecture

Our final system architecture is a multi-stage
pipeline designed to maximize robustness and accu-
racy. The complete workflow is described below:

1. Preprocessing: All input sentences undergo
normalization (NFKC) and whitespace stan-
dardization.

2. Retrieval-Augmented Generation (RAG):

• Exact Match: We check if the source
sentence exists verbatim in the training
data. If found, the corresponding target
is returned immediately.

• Fuzzy Match: We search for training
sentences with a normalized edit distance
of ≤ 1 character. This handles minor
variations in punctuation or spacing.

3. Hybrid Generation (if RAG fails):

• SMT Branch: The input is processed
by our IBM Model 1 system (enhanced
with diagonal prior and back-translation).
We generate the top-5 hypotheses using
beam search.
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• NMT Branch: The input is processed
by the NLLB-200-Distilled-600M model
(fine-tuned with LoRA). We generate the
top-10 hypotheses using beam search
with a temperature of 1.0.

4. Minimum Bayes-Risk (MBR) Reranking:

• We pool the hypotheses from both
branches (N = 15).

• We compute the utility score for each
hypothesis against all others using the
metric: U(h) = 0.6 × BLEU(h, h′) +
0.4× chrF(h, h′).

• The hypothesis with the highest average
utility is selected.

5. Post-Processing:

• Digit Mapping: For Indic target lan-
guages (Hindi, Bhili, Gondi, Mundari),
we map Latin digits (0-9) to Devanagari
digits.

• Entity Preservation: We verify that all
URLs and email addresses present in the
source are preserved in the target. If
missing, they are appended.

B Hyperparameters and Configuration

We provide the detailed hyperparameters used for
our best-performing models.

Parameter Value
NLLB-200 (LoRA)

Base Model nllb-200-distilled-600M
LoRA Rank (r) 16
LoRA Alpha (α) 32
LoRA Dropout 0.05
Target Modules [q_proj, v_proj, k_proj,

out_proj, fc1, fc2]
Learning Rate 2× 10−4

Batch Size 16
Epochs 3
Quantization 8-bit (Int8)

SMT (IBM Model 1)
EM Iterations 6
Diagonal Prior (λdiag) 4.0
Smoothing Kneser-Ney (3-gram)
Back-Translation Rounds 3

MBR Decoding
Candidate Pool Size 15 (5 SMT + 10 NMT)
Utility Function 0.6 · BLEU + 0.4 · chrF

Table 4: Hyperparameters for NMT, SMT, and MBR
components.

C Detailed Experiment History

Table 5 lists the complete history of our experi-
ments, showing the evolution from simple base-
lines to the final hybrid system.

D Linguistic Analysis Details

We performed a detailed analysis of the dataset
characteristics to inform our model choices. Key
observations from our analysis:

• Isomorphism: Hindi-Bhili and Hindi-Gondi
are highly isomorphic (length correlation r ≥
0.95), with nearly identical sentence length
ratios (≈ 1.00), justifying the use of SMT for
these pairs.

• Morphological Richness: Mundari exhibits
the highest Type-Token Ratio (TTR = 0.22),
more than double that of Hindi, indicating
extreme morphological complexity and data
sparsity. This necessitated the use of Back-
Translation for vocabulary expansion.

• Structural Divergence: English-Santali
shows the lowest length correlation (r = 0.89)
and a high length ratio (≈ 1.18), reflecting
Santali’s agglutinative morphology, suggest-
ing that NMT is more suitable than SMT for
this pair.

Visualizations of these characteristics are pro-
vided in Figure 2.
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(a) Length Correlation (b) Length Distribution

(c) Length Ratios (d) Zipf’s Law Analysis

Figure 2: Exploratory Data Analysis. (a) Hexbin plots showing strong isomorphism for Hindi-Bhili/Gondi. (b) KDE
plots showing distribution overlap. (c) Violin plots of target/source length ratios. (d) Zipf’s law plots confirming
natural language properties.

ID Method Description Public Private
Phase 1: Statistical Baselines

ML0 Dice Coefficient (Word-by-word, No LM) 158.84 140.32
ML5 IBM Model 1 + Word LM 182.53 148.68
ML1 IBM1 (Diag Prior) + KN LM + Char LM 175.83 143.91
Exp 3 IBM1 (Diag) + Back-Translation + MBR 193.26 153.91

Phase 2: Neural Methods (NLLB)
LLM0 NLLB LoRA + Dice Fallback (Early Hybrid) 171.64 161.10
LLM2 NLLB LoRA (Standard Fine-tuning) 302.08 166.47
LLM5 NLLB LoRA + SMT + MBR (Best Single NMT) 306.56 174.53

Phase 3: Final Hybrid System
Final RAG + NLLB-LoRA + SMT + MBR + Post-Proc 311.61 186.37

Table 5: Complete experiment history showing the progression of Public and Private leaderboard scores.
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Abstract

This paper presents the findings of the MM-
LoSo Shared Task on Machine Translation.
The competition features four tribal languages
from India: Bhili, Mundari, Gondi, and San-
tali, each with 20,000 high-quality parallel sen-
tence pairs and a 16,000-sentence evaluation
set. A total of 18 teams submitted across all
language pairs. The shared task addresses
the challenges of translating India’s severely
low-resource tribal languages, which, despite
having millions of speakers, remain digitally
marginalized due to limited textual resources,
diverse scripts, rich morphology, and minimal
publicly available parallel corpora. Systems
were ranked using a weighted composite score
combining BLEU (60%) and chrF (40%) to
balance structural accuracy and character-level
fluency. The best-performing system leveraged
IndicTrans2 with directional LoRA adapters
and reverse-model reranking. This work es-
tablishes the first reproducible benchmark for
machine translation in these tribal languages.
All datasets, baseline models, and system out-
puts are publicly released to support continued
research in India’s tribal language technologies.

1 Introduction

India is home to an extraordinary diversity of lan-
guages, including more than 460 tribal languages
documented in the 2011 Census. Many of these
languages have substantial speaker populations, yet
they remain severely underrepresented in modern
NLP research. The primary reasons include lim-
ited digital presence, inconsistent or evolving or-
thographies, and the absence of large, standardized
parallel corpora (Joshi et al., 2020; Nekoto et al.,
2020). As a result, the rapid progress in deep learn-
ing and multilingual LLMs has had little impact on

the communities that speak these languages.
The challenges faced by tribal communities ex-

tend beyond language processing. Data scarcity af-
fects crucial sectors such as healthcare, education,
biodiversity monitoring, and governance. Prac-
titioners working in these areas often operate in
environments with limited connectivity and min-
imal technical infrastructure. For AI systems to
be useful in such contexts, they must be resilient
to missing modalities, noisy inputs, and shifting
distributions (Sun et al., 2023). This shared task
therefore focuses not only on translation accuracy
but also on robustness under real-world constraints.

The MMLoSo Language Challenge
2025 (Shukla et al., 2025) aims to directly
address this gap by advancing research in machine
translation for India’s tribal and very low-resource
languages. While recent large-scale multilin-
gual and multimodal models (Conneau et al.,
2020; Alayrac et al., 2022; Li et al., 2023) have
demonstrated impressive generalization abilities,
they are primarily trained on high-resource
languages and domains. Tribal languages, which
are often oral, regionally grounded, and culturally
specific, fall outside the distribution of mainstream
training datasets. This disconnect results in poor
performance, hallucination, and limited utility for
real-world applications.

2 Task Description

This shared task focuses on developing neural ma-
chine translation systems for bidirectional trans-
lation between high-resource languages (Hindi,
English) and four low-resource Indian tribal lan-
guages: Bhili, Mundari, Gondi, and Santali. The
primary challenge lies in building effective mod-
els despite limited parallel data, diverse writing
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systems, and domain-specific vocabulary character-
istic of tribal communities.

The specific goals of the shared task are:

1. Develop effective translation systems for
low-resource Indian languages. Models
should handle small corpora, domain varia-
tion, and diverse scripts while producing faith-
ful and stable translations.

2. Evaluate cross-lingual transfer and
parameter-efficient adaptation. This
includes approaches such as LoRA-based
fine-tuning, multilingual joint training, re-
trieval augmentation, and hybrid SMT-NMT
pipelines.

3. Promote socially grounded and inclusive
NLP. Better translation systems can support
information access in healthcare, education,
disaster response, and public services, help-
ing reduce the digital divide faced by tribal
communities.

4. Create open foundations for future re-
search. By releasing curated datasets and
baseline systems, the shared task aims to en-
able long-term work in tribal language pro-
cessing and cultural preservation.

2.1 Task Format
Participants were provided with four training
files (one per language pair: Bhili–Hindi,
Mundari–Hindi, Gondi–Hindi, and San-
tali–English), each containing parallel sentences
with columns: row_id (unique identifier), a high-
resource language column (hindi or english),
and the corresponding tribal language column.

The test set provided unlabeled source sen-
tences with columns: row_id, source_sentence,
source_lang, and target_lang. Systems were
expected to generate translations in both direc-
tions (high-to-low and low-to-high resource) and
submit predictions with the format: row_id,
source_lang, source_sentence, target_lang, and
target_sentence.

2.2 Evaluation Metrics
Systems were ranked using a weighted compos-
ite score that balances word-level accuracy and
character-level fluency. The final score is defined
as:

Lang Pair Columns

Hin ↔ Bhili row_id, hindi, bhili
Hin ↔ Mundari row_id, hindi, mundari
Hin ↔ Gondi row_id, hindi, gondi
Eng ↔ Santali row_id, english, santali

Test Data row_id, source_sent

Table 1: Dataset Overview.

S = 0.6× BLEU + 0.4× chrF

BLEU (Papineni et al., 2002) receives higher
weight (60%) due to its sensitivity to n-gram preci-
sion, while chrF (Popovic, 2015) contributes 40%
to capture character-level morphology—crucial for
languages like Mundari and Santali.

Scores were computed for each translation direc-
tion and aggregated with an additional directional
weighting:

• High-to-Low (60%): Higher weight is as-
signed to translations into the tribal languages,
reflecting the task’s emphasis on accessibility
for low-resource communities.

• Low-to-High (40%): Translations from the
tribal languages are given slightly lower
weight.

This composite metric ensures that systems are
evaluated fairly across both lexical accuracy and
morphological sensitivity.

Full Formula:

Score = 0.6

[
0.6

∑

d∈H→L

BLEUd + 0.4
∑

d∈L→H

BLEUd

]

+ 0.4

[
0.6

∑

d∈H→L

chrFd + 0.4
∑

d∈L→H

chrFd

]
.

Where H → L represents the high-to-low direc-
tions (e.g., Hindi → Bhili) and L → H represents
the low-to-high directions.

3 Dataset

The shared task focuses on four low-resource tribal
languages of India (see Table 1): Bhili, Mundari,
Gondi, and Santali. All four have large speaker
communities but extremely limited digital presence.
Existing text is sparse, unaligned, or not machine
readable, making these languages particularly chal-
lenging for machine translation. The dataset com-
prises 80,000 training pairs (20,000 per language
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pair) and 15,999 test sentences distributed across
bidirectional translation tasks.

These language pairs represent a mix of typolog-
ically related and unrelated languages. Hindi, Bhili,
and Mundari are written in Devanagari, though they
belong to different language families (Indo-Aryan
and Austroasiatic). Gondi, also written in Devana-
gari, is Dravidian. Santali, however, is an Aus-
troasiatic language written in the Ol Chiki script
and paired with English, making it one of the most
linguistically distant settings in the task.

We provide a brief overview of the languages
used in this challenge below:
Bhili (ISO 639-3: bhb) is a Western Indo-Aryan
language spoken by approximately 13 million peo-
ple across western and central India. Despite its
large speaker base and proximity to major lan-
guages like Gujarati and Marathi, Bhili remains
severely under-resourced in terms of digital con-
tent and NLP tools. The variety used in this dataset
is the Jhabua dialect from Madhya Pradesh, written
in Devanagari script.
Mundari (ISO 639-3: unr) is a North Munda lan-
guage of the Austroasiatic family, spoken by ap-
proximately 1.6 million people primarily in Jhark-
hand and neighboring states. Although tradition-
ally written in multiple scripts, we use Devanagari
to maintain consistency with Hindi-aligned NLP
pipelines. Mundari has complex word structures
where multiple prefixes and suffixes combine to
form single words, and suffers from limited parallel
data and strong influence from regional dominant
languages.
Gondi (ISO 639-3: gon) is a South-Central Dravid-
ian language with approximately 3 million speak-
ers distributed across central India. Due to lan-
guage shift pressures, many speakers are shifting
to regional dominant languages. We focus on the
Devanagari-script variety to ensure compatibility
with mainstream Hindi NLP tools and resources.
Santali (ISO 639-3: sat) is a major Munda lan-
guage with over 7 million speakers across India,
Bangladesh, Nepal, and Bhutan. Unlike the other
three languages in this task, Santali is paired with
English rather than Hindi. We focus on the Ol
Chiki script, an indigenous writing system created
in the 1920s that is increasingly used in education
and modern publications. NLP resources for Ol
Chiki remain extremely limited, particularly for
parallel corpora.

3.1 Data Collection and Preprocessing
All parallel datasets were sourced from curated web
content, Wikipedia articles, and resources provided
by the Ministry of Tribal Affairs, Government of In-
dia. Each dataset follows a uniform structure with
a unique row ID and a pair of parallel sentences.
The data underwent a multi-stage preprocessing
pipeline: sentence alignment, character normal-
ization, deduplication of near-identical pairs, and
filtering to retain only sentences between 6 and 80
words. Cosine similarity filtering removed pairs
that were overly similar across source and target.
For Bhili, expert-driven translation was employed
to ensure accuracy and contextual quality. Tok-
enization was handled uniformly using Sentence-
Piece (Kudo and Richardson, 2018).

For the English–Santali pair, the English source
was produced by translating curated Hindi content
using IndicTrans2 (Gala et al., 2023) to maintain
thematic consistency across language pairs, with
additional lowercasing applied to English text. The
test set contains only the source sentence and lan-
guage direction; participants must generate the tar-
get translation. It was created using stratified sam-
pling across multiple domains to ensure coverage
while avoiding repetition. All data is distributed
under the Creative Commons BY-SA 4.0 license.

3.2 Dataset Statistics
Tables 2 and 3 summarize the corpus statistics. All
training sets contain exactly 20,000 parallel pairs.
Vocabulary analysis (Figure 1) reveals significant
lexical sparsity, particularly in Bhili and Mundari,
where target vocabularies exceed 60,000 tokens due
to high morphological variation. Santali also ex-
hibits high diversity driven by productive affixation
in the Ol Chiki script. Structurally, Gondi remains
the most compact (avg. 13.8 tokens), whereas Bhili
presents the longest sequences in both source and
target directions.

Overall, the dataset reflects real-world low-
resource conditions: diverse scripts, high morpho-
logical richness, and large vocabularies relative to
corpus size. These properties justify the need for
specialized training strategies such as LoRA-based
direction-specific fine-tuning, retrieval-augmented
methods, and conservative decoding techniques.

3.3 Dataset Complexity Analysis
We present a comprehensive exploratory data analy-
sis (EDA) of the results to understand the linguistic
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English–Santali Hindi–Gondi

Hindi–Mundari Hindi–Bhili

Figure 1: EDA visualizations across the four language pairs.

Dataset Src Src Len Src Voc Tgt Tgt Voc
santali-train Eng 16.5 42114 San 44764
gondi-train Hin 14.4 25133 Gon 44756
mundari-train Hin 16.3 35373 Mun 63426
bhili-train Hin 21.3 40636 Bhi 67019

Table 2: Training data statistics (20,000 pairs per lan-
guage pair).

Source Lang Count Avg Len Vocab Size
Bhili 1999 21.6 13125
English 2000 15.5 7810
Gondi 2000 6.9 5673
Hindi 6000 15.7 16860
Mundari 2000 14.1 11356
Santali 2000 14.4 7247

Table 3: Test set statistics

complexity of the corpus. Table 4 summarizes the
metrics calculated using the NLLB tokenizer and
standard lexical diversity measures.

Morphological Complexity
We computed Token Fertility - the average number
of subword tokens required to represent a single
word—as a proxy for morphological richness. As
shown in Table 4, Santali and Mundari show ex-
tremely high fertility rates (3.02 and 2.55, respec-
tively) compared to their source languages. This
indicates highly agglutinative structures where a
single word often translates to multiple tokens in
the NLLB vocabulary, posing a significant chal-
lenge for the model.

Structural Divergence
We measured the Pearson correlation coefficient
(r) between source and target sentence lengths.

• High Isomorphism (r > 0.9): Hindi-Gondi

(r = 0.99) and Hindi-Bhili (r = 0.95) show
near-perfect length correlation. This suggests
these languages share similar syntactic struc-
tures with Hindi, making them easier for mod-
els to align.

• Divergence (r < 0.9): English-Santali (r =
0.89) and Hindi-Mundari (r = 0.86) show
lower correlation, reflecting significant struc-
tural differences (e.g., SVO vs. SOV word
order) that complicate translation.

Table 4: Linguistic Statistics of the Training Data. TTR:
Type-Token Ratio (Lexical Richness). Fertility: Avg.
subwords per word (NLLB tokenizer).

Pair Corr (r) TTR Fertility
Src Tgt Src Tgt

Eng-Santali 0.89 0.127 0.116 1.35 3.02
Hin-Gondi 0.99 0.088 0.162 1.39 2.32
Hin-Mundari 0.86 0.108 0.223 1.50 2.55
Hin-Bhili 0.95 0.095 0.155 1.43 1.73

4 Approaches and Results

The shared task attracted 18 teams who submitted
solutions on Kaggle. Teams achieving a private
leaderboard score above 150 were invited to sub-
mit challenge papers describing their approaches.
Out of the seven eligible teams, four accepted this
invitation and provided detailed system descrip-
tions. Most teams started from multilingual pre-
trained models and fine-tuned them on the provided
training data, adding specialized techniques to han-
dle data scarcity, morphological complexity, and

124



vocabulary mismatch. Table 5 presents the final
rankings for the four teams that submitted papers.

Table 5: Complete final leaderboard ranked by private
scores. Teams marked with * submitted challenge pa-
pers (invitation threshold: private score >150).

Rank Team Name Public Private

1 SajayR* 319.39 212.04
2 HCMUS_PrompterX* 311.61 186.37
3 No 310.19 184.87
4 boy Magic 309.98 179.83
5 Shooting star* 216.04 179.49
6 VaibhavKanojia* 171.39 161.11
7 Shivansh Jha 193.36 153.90
8 Badr A 224.09 145.47
9 EROL 155.22 134.02

10 king 162.25 133.96
11 e0nia 143.89 131.56
12 c00k 290.30 111.47
13 Kabir Raj Singh 140.64 104.07
14 Daglox Kankwanda 122.63 96.22
15 Michael Ibrahim 92.00 87.17
16 Harsh Rajbhar 37.28 35.18
17 winner_can_exist 26.10 20.80
18 Code by Nadiia 4.22 6.28

4.1 System 1: LoRAs in All Directions
The winning team (Table 5, Rank 1) started from
the widely used NLLB (Costa-jussà et al., 2022)
backbone but later switched to the IndicTrans2
model (1.1B parameter version) (Gala et al., 2023).
This decision was driven by a detailed analysis of
tokenization behavior on the provided datasets. In-
dicTrans2 showed far superior fertility statistics,
especially for Santali. For example, the model
produced an average fertility of 1.44 tokens per
character for Santali, compared to 3.07 for NLLB.
Lower fertility indicates that the model represents
the script more efficiently and reduces fragmenta-
tion, which is essential when dealing with aggluti-
native morphology. This gave IndicTrans2 a clear
representational advantage.

4.1.1 Training Strategy
The team employed a three-stage "Saturate-then-
Specialize" pipeline designed to balance multilin-
gual generalization with task-specific specializa-
tion.

Tag-Only Preprocessing. To preserve con-
trastive linguistic properties often lost during script
unification, the team utilized explicit language tags.
Surrogate tags were mapped to the nearest vocab-
ulary equivalent (e.g., Bhili to mar_Deva), en-
abling the model to internally align unseen lan-

guages with typologically similar ones without ex-
ternal transliteration.

Joint Fine-Tuning. The backbone was first fine-
tuned on the union of all datasets to “saturate” the
model with shared domain knowledge. This expo-
sure to diverse lexical distributions stabilized the
embedding space, improving robustness in data-
sparse conditions.

Directional LoRA Adapters. To eliminate catas-
trophic forgetting, the backbone was frozen while
training separate Low-Rank Adapters (LoRA) (Hu
et al., 2022) for each direction (r = 64, α = 128).
This parameter isolation prevented cross-lingual
interference (negative transfer) while allowing tar-
geted adaptation for specific scripts and grammars.

4.1.2 Inference Strategy
To mitigate hallucinations, the system employed
noisy channel reranking (Yee et al., 2019). Instead
of relying solely on the forward probability P (y|x),
K candidates were generated and re-scored using
a reverse model P (x|y):

ŷ = argmax
y∈Y

[α · logP (y|x) + β · logP (x|y)]

This objective acts as a semantic regularizer by
rewarding translations from which the source sen-
tence is reconstructible. Candidates that hallucinate
or deviate in meaning yield low reverse probabili-
ties and are effectively filtered out.

4.2 System 2: JHARNA MT
The runner-up team (Rank 2) identified halluci-
nation as the primary failure mode in data-scarce
settings and designed a hybrid architecture. By
integrating retrieval-based memory and Statistical
Machine Translation (SMT) with modern Neural
Machine Translation (NMT), the system grounds
neural generations in real training examples to en-
sure lexical fidelity.

4.2.1 Training Strategy
The pipeline prioritizes observed data via a two-tier
retrieval module:

• Exact Match: Direct retrieval of training tar-
gets for inputs seen during training ( 8% of
test data).

• Fuzzy Match: Retrieval of examples with
edit distance ≤ 1 to ground common expres-
sions.
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For unseen inputs, candidates are generated by
two distinct models:

• SMT Branch: An IBM Model 1 sys-
tem (Brown et al., 1993) with diagonal align-
ment priors. This branch produces "literal"
translations that are robust against NMT hal-
lucinations.

• NMT Branch: An NLLB-200 (Costa-jussà
et al., 2022) model fine-tuned with LoRA
adapters (Hu et al., 2022) (r = 16) to pro-
vide fluency and context awareness.

4.2.2 Inference Strategy
To unify the branches, the system pools N hypothe-
ses and applies Minimum Bayes-Risk (MBR) de-
coding (Kumar and Byrne, 2004). This selects
the "consensus" translation that maximizes aver-
age similarity (BLEU/chrF) to all other candidates.
This effectively filters out hallucinations, as they
tend to diverge significantly from the stable SMT
outputs.

The team observed complementary error modes:
SMT is rigid but lexically safe, while NMT is flu-
ent but prone to hallucination. The hybrid MBR
approach successfully combines these strengths,
yielding significant stability improvements over
pure neural baselines.

4.3 System 3: Breaking Language Barriers
The Breaking Language Barriers team (Rank
5) adopted a data-centric strategy using NLLB-
200 (Costa-jussà et al., 2022) as the primary model
and mBART-50 (Liu et al., 2020) as a validator.
Lacking native proficiency, the focus remained on
detecting pathological model behaviors through
statistical heuristics rather than linguistic intuition.

4.3.1 Training Strategy
To address data sparsity, all bidirectional pairs were
concatenated into a single Dunified dataset. This
doubled the effective training size and enforced
a shared semantic space across all languages, en-
couraging cross-lingual alignment and reducing
overfitting.

4.3.2 Inference Strategy
A “Safety Net” ensemble was implemented to filter
catastrophic failures. If the primary model’s output
length ratio was extreme (< 0.3 implying under-
generation or > 3.0 implying hallucination), the

system fell back to mBART predictions. This mech-
anism significantly improved robustness, boosting
the private leaderboard score by over 5 points.

4.4 System 4: Divide and Translate
The Divide and Translate team (Rank 6) based their
system on the hypothesis that multilingual models
suffer from negative interference when dealing with
languages that differ significantly in syntax. For
example, English is an SVO language while San-
tali and the Hindi aligned languages are SOV. To
avoid cross language interference, the team trained
separate decoders for each direction while keeping
a shared encoder.

4.4.1 Training Strategy
The shared encoder from NLLB-600M (Costa-
jussà et al., 2022) was frozen completely. This
prevented the degradation of the multilingual rep-
resentations learned during large-scale pretraining.
Only the decoder parameters were updated. This
acted as a strong regularizer and reduced the risk
of overfitting, which is common when training on
small datasets.

4.4.2 Results
The approach produced very stable results with
minimal public private score variance. However,
the performance ceiling was lower than that of
LoRA based or hybrid systems. The frozen en-
coder limited the model’s ability to adapt to the
specific scripts and morphological patterns of the
tribal languages.

5 Analysis and Key Findings

This section examines common patterns, chal-
lenges, and strategic decisions across the four sub-
mitted systems. We analyze the key factors that
influenced performance, including choice of back-
bone models, approaches to mitigating hallucina-
tion, and how teams addressed script diversity and
morphological complexity. These insights high-
light both successful strategies and persistent chal-
lenges in low-resource machine translation.

5.1 Model Architecture Choices
A major distinction among the systems was the
choice of backbone model. Three teams used
NLLB (Costa-jussà et al., 2022), but the winning
system built on IndicTrans2 (Gala et al., 2023). The
differences stem from tokenization behavior. Many
teams reported that NLLB struggled to tokenize Ol
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Chiki and certain Devanagari variants. IndicTrans2,
pretrained on a broader set of Indic languages, han-
dled these scripts much more effectively.

Submissions also followed two main architec-
tural strategies: (1) Pure neural systems, which
rely solely on model scale, architecture, and
decoding techniques; and (2) Hybrid systems,
which combine SMT, retrieval, and neural mod-
els to address data scarcity. Hybrid approaches
showed strong performance in low-resource set-
tings, demonstrating that classical MT components
remain useful when training data is limited.

5.2 Hallucination Mitigation Strategies
Hallucination was the dominant challenge of the
task. Each system proposed a different mitigation
strategy:

• System 1: Reverse model scoring (Noisy
Channel).

• System 2: Consensus decoding (MBR).

• System 3: Length based fallbacks (Conserva-
tive Ensemble).

• System 4: Architectural constraints (Frozen
Encoder).

The most effective strategies were the Noisy Chan-
nel and MBR approaches, both of which rely on
generating multiple candidates and filtering them
via external validation signals.

5.3 Script and Morphological Challenges
Santali, written in Ol Chiki, presented a major
challenge for many backbones. Models without
explicit support for the script required additional
preprocessing or surrogate tags. IndicTrans2 had
a clear advantage due to its broader coverage of
Indic scripts.

Mundari has a very high type token ratio, more
than double that of Hindi. This causes data spar-
sity and increases the difficulty of learning accurate
word representations. System 2 used back transla-
tion to expand the dataset and expose the model to
a wider range of morphological patterns.

5.4 Generalization and Overfitting
Some teams observed significant score drops be-
tween the public and private leaderboards. This in-
dicates overfitting to specific patterns in the public
test set. The Divide and Translate system showed

the smallest gap, supporting their claim that en-
coder freezing works as a strong regularizer. The
large gap between Public and Private scores (Ta-
ble 5) highlights the challenge of generalization in
low-resource settings.

6 Conclusion

The MMLoSo 2025 Shared Task is one of the first
efforts to evaluate machine translation for India’s
tribal and severely low-resource languages. By re-
leasing parallel datasets for Bhili, Gondi, Mundari,
and Santali, the task provides a consistent bench-
mark for languages rarely covered in mainstream
NLP. The task attracted 18 participating teams,
with the top four achieving private scores above
150 and contributing detailed system descriptions.
Teams employed low-resource-focused techniques
such as retrieval augmentation, hybrid SMT–NMT
systems, noisy-channel reranking, and direction-
specific LoRA adapters to address challenges in-
cluding script diversity, limited digital text, and
rich morphology.

The results highlight the need for more docu-
mentation and larger datasets for tribal languages,
which have large speaker communities but lim-
ited digital resources. By offering open data,
standardized evaluation, and strong baselines, the
shared task aims to support long-term research
in inclusive and socially meaningful NLP. Future
editions will expand toward multimodal transla-
tion, cross-dialect evaluation, and domain-specific
benchmarks for governance, education, and cul-
tural preservation.
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