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Abstract

Large language models (LLMs) are increas-
ingly strong contenders in machine transla-
tion. In this work, we focus on document-level
translation, where some words cannot be trans-
lated without context from outside the sentence.
Specifically, we investigate the ability of promi-
nent LLMs to utilize the document context dur-
ing translation through a perturbation analysis
(analyzing models’ robustness to perturbed and
randomized document context) and an attribu-
tion analysis (examining the contribution of
relevant context to the translation). We conduct
an extensive evaluation across nine LLMs from
diverse model families and training paradigms,
including translation-specialized LLMs, along-
side two encoder-decoder transformer base-
lines. We find that LLMs’ improved document-
translation performance compared to encoder-
decoder models is not reflected in pronoun
translation performance. Our analysis highlight
the need for context-aware finetuning of LLMs
with a focus on relevant parts of the context
to improve their reliability for document-level
translation.

1 Introduction

Language normally consists of collocated, struc-
tured, coherent groups of sentences referred to as a
discourse (Jurafsky and Martin, 2009, chapter 21).
Discourse properties that go beyond an individ-
ual sentence include the frequency and distribution
of words within a document, topical, functional
and discourse coherence patterns, and the use of
reduced expressions. These properties have stimu-
lated a good deal of machine translation research in
the 1990s, aimed at endowing machine–translated
target texts with the same properties as their source
texts (Nash-Webber et al., 2013). Since then, there
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has been a growing interest in document-level trans-
lation, mainly focused on document-level influ-
ences on lexical choice, and developing methods,
annotated resources and assessment metrics for
discourse-level machine translation (Popescu-Belis
et al., 2019).

Large language models (LLMs) show promise
on multiple language technologies, with recent
models specially finetuned for machine translation
(Alves et al., 2024; Xu et al., 2023). Wang et al.
(2023) suggest that translation LLMs have potential
to be the new paradigm for document-level transla-
tion. While such work focuses only on assessing
translation quality using metrics such as BLEU or
COMET, our work investigates how models uti-
lize context in translation. Inspired by Mohammed
and Niculae (2024), we follow an interpretable ap-
proach towards context utilization evaluation. In
particular, we focus on answering two main ques-
tions: how sensitive LLMs are to the correct con-
text, and how well they utilize the relevant parts of
context.

For context sensitivity assessment, we com-
pare the general and discourse-phenomena-specific
(Müller et al., 2018) translation performance of
LLMs under the gold context setup to a perturbed
context setup. For relevant-context utilization as-
sessment, we perform a finer-grained evaluation.
We look at models’ internals using attribution meth-
ods (Ferrando et al., 2023) to quantify the contribu-
tion of relevant context to the translation. Context
utilization in machine translation has been explored
in encoder-decoder models, such as by Sarti et al.
(2023), who developed an end-to-end interpretabil-
ity framework to assess context-aware translation.
To the best of our knowledge, we are the first to
explore context utilization in translation LLMs via
perturbation and attribution methods.

Our main findings can be summarized in the
following:
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• Translation-finetuned LLMs outperform
encoder-decoder models at overall translation,
but perform worse on discourse phenomena.

• Despite being smaller and not specifically fine-
tuned for translation tasks, the EuroLLM-9B-
Inst multilingual model outperforms the Tow-
erInstruct 13B model at translation.

• All evaluated models show robustness to ran-
domized context. We attribute this to lack of
proper context utilization and highlight the
need for explicit context-aware finetuning of
LLMs to ensure their reliability for document-
level translation.

• Our analysis of model internals reveals low
relevant-context attribution scores, further
highlighting the necessity for explicit context-
aware finetuning.

The structure of our paper is as follows: §2
provides an overview of the analyses conducted,
while §3 outlines the experimental setup. In §4, we
present and discuss the results of our experiments.
A review of additional related work is included in
§5, and we present our conclusions and sugges-
tions for future work in §6. Finally, §7 addresses
the limitations of our research and our ethical con-
siderations are detailed in §8.

2 Analysis overview

This section presents an overview of the analyses
we conducted. Like Mohammed and Niculae
(2024), we perform a perturbation analysis on
translation quality and pronoun resolution accuracy.
Moreover, we examine model mechanics through
an attribution analysis via interpretability methods.

2.1 Perturbation Analysis
Translation quality. To assess model’s sensitivity
to gold context, we compare models’ translation
behavior in different context setups: a gold, per-
turbed, and random context setup on IWSLT2017
data (Cettolo et al., 2012). The gold context
(Figure 1a) is the previous source-target pairs. For
the perturbed context (Figure 1b), we randomly
sample sentences from a different document,
matching the size of the gold context. We sample
sentences from a different document instead of the
same document to ensure a robust analysis of mod-
els’ reliance on relevant contextual information

and to avoid introducing unintended biases due to
implicit thematic or lexical similarities. Random
context (Figure 1c) is uniformly-sampled random
tokens from the model’s vocabulary, with the same
size as the gold context.

Pronoun resolution. We perform a phenomenon-
specific assessment of models’ sensitivity to gold
context by comparing pronoun resolution perfor-
mance in different context setups on ContraPro
data (Müller et al., 2018; Lopes et al., 2020). We
focus on pronoun resolution as a measurable
phenomenon where perturbation experiments
can be defined due to the availability of datasets
with supporting context annotations. The gold
and random contexts (Figures 2a and 2c) are the
same as for IWSLT2017 data. Here, instead of
the perturbed context replacing the gold context
with sentences from different documents, we only
replace antecedent tokens in the gold context with
different-gender tokens (Figure 2b). This allows
for a finer-grained context-utilization analysis. We
create a database of antecedent words, clustered
by POS (Part Of Speech) tag and gender. Each
antecedent is replaced with a random word of the
same POS tag but different gender. For antecedents
with rare POS tags (0.2% of cases), no such
alternative can be found, so we sample a random
different-gender word with any tag.

2.2 Attribution Analysis

For a finer-grained evaluation, we analyze how
much LLMs utilize relevant context when trans-
lating ambiguous pronouns. We use two existing
attribution methods: ALTI-Logit (Ferrando et al.,
2023) and input-erasure (Li et al., 2016), as Krishna
et al. (2022) point out that state-of-the-art explana-
tion methods often disagree. ALTI-Logit tracks the
logit (pre-activation of the softmax) contributions
back to the input by aggregating across layers and
considering the mixing of information in intermedi-
ate layers using ALTI (Ferrando et al., 2022). Input-
erasure measures the change in model’s prediction
when removing parts of the input. Attribution meth-
ods provide for every token in the model input X ,
a non-negative attribution score {at : t ∈ X}, cor-
responding to the amount that token contributes to
the next token prediction. For our aim, we mea-
sure how much of the overall attribution goes to
a subset of the input S ⊆ X . This motivates the
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attribution percentage:

AP(S)% =

∑︁
t∈S at∑︁
t∈X at

× 100%. (1)

3 Experimental Details

This section includes details about models, datasets,
prompt formats, and evaluation metrics used in our
experiments. The sustainability statement for our
experiments is presented in Appendix A.

3.1 Models
We experiment on three model categories to cap-
ture the effects of large scale training, multilingual
pretraining, and translation-specific finetuning.

Translation-finetuned LLMs. From the Tower
family (Alves et al., 2024) we consider TowerBase,
built on top of Llama-2 by continuing pretraining
on multilingual data, and TowerInstruct which
further finetunes TowerBase for translation-related
tasks. We also analyze ALMA (Xu et al., 2023),
which follows a two-step finetuning approach also
on top of Llama-2, with multilingual and parallel
data. As the foundation of the models above, we
also include Llama-2 (Touvron et al., 2023), in
order to capture the effects of translation-specific
finetuning on context use. We consider the 7B and
13B versions of all models wherever feasible.

Multilingual LLMs. We experiment on EuroLLM-
9B-Inst (Martins et al., 2024), a model trained
on 35 languages, encompassing all European
Union languages and additional relevant ones.
Specifically, we use the instruction-tuned version
of EuroLLM-9B-Inst to evaluate the impact of
(multilingual pretraining + instruction tuning)
compared to the (monolingual pretraining + contin-
ued multilingual pretraining + translation-specific
fine-tuning) of Tower models.

Encoder-decoder baselines. We analyze NLLB-
3.3B (Costa-jussà et al., 2022) as one of the state-
of-the-art encoder-decoder translation models. As
NLLB is trained at the sentence-level and not
intended for document-level translation, we in-
clude only its sentence-level scores. As a context-
aware encoder-decoder baseline, we also include
a transformer-small model trained on the training
subset of IWSLT2017 TED data (Cettolo et al.,
2012). In specific, we train a small encoder-
decoder transformer model (Vaswani et al., 2017)

(hidden size of 512, feedforward size of 1024, 6
layers, 8 attention heads). We use the Adam op-
timizer with β1 = 0.9 and β2 = 0.98 and use an
inverse square root learning rate scheduler with an
initial value of 5×10−4 and with a linear warm-up
in the first 4000 steps. We train the model with
early stopping on the validation perplexity. The
model is trained using a dynamic context size of
0–5 previous source and target sentences to en-
sure robustness against varying context size, as
recommended by Sun et al. (2022). The training is
performed on top of Fairseq (Ott et al., 2019).

3.2 Datasets
General translation assessment data. We
evaluate on IWSLT2017 TED data (Cettolo
et al., 2012), in English to German (EN�DE) and
English to French (EN�FR). For EN�DE, we
combine tst2016–2017 for a test set of 2,271
sentences across 23 documents. For EN�FR, we
use tst2015, containing 1,210 sentences in 12
documents. Following Mohammed and Niculae
(2024), we use a context size of 5 previous source-
target pairs. Future work could investigate the
impact of context size on translation performance.

Pronoun resolution experiments data. We use
ContraPro, a subset of OpenSubtitles (Müller et al.,
2018; Lopes et al., 2020), consisting of examples
with ambiguous pronouns, their gold translations,
and automatic annotation of antecedents (relevant
context) needed for resolution. For EN�DE, the
dataset considers the translation of the English
pronoun “it” to the three German pronouns “er”,
“sie” or “es”. For EN�FR, the dataset concerns
the translation of the English pronouns “it”, “they”
to their French correspondents “il”, “elle”, “ils”,
and “elles”. The dataset is balanced and consists
is 12K instances for EN�DE and 14K instances
for EN�FR. Our experiment is controlled: we
experiment on instances where the antecedent
distance is in the interval [1,5] in sentences and use
5 source-target pairs as context at inference time.

Attribution analysis data. Using ContraPro, we
force-decode up to the pronoun, and measure the
attribution percentage of the entire context and the
relevant context (antecedents). Due to computa-
tional constraints, we analyze only the 7B version
of LLMs in addition to EuroLLM-9B-Inst, ran-
domly sample a balanced 2k subset of ContraPro
and use a context size of 2.
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English: When I was a kid, my parents would tell me, "You can make a mess, but you have to clean up after yourself."
German: Als Kind sagten mir meine Eltern immer: "Du kannst Unordnung machen, solange du hinterher aufräumst."
English: So freedom came with responsibility.
German: Freiheit war also mit Verantwortung verbunden.
Given the provided parallel sentence pairs, translate the following English sentence to German:
English: But my imagination would take me to all these wonderful places, where everything was possible.
German: Aber meine Fantasie eröffnete mir viele wunderbaren Orte, an denen alles möglich war.

(a) Gold-context prompt

English: Before becoming a writer, Nora was a financial planner.
German: Bevor sie Autorin wurde, war Nora Finanzplanerin.
English: She had to learn the finer mechanics of sales when she was starting her practice, and this skill now helps her write compelling pitches to

editors.↪→
German: Sie befasste sich detailliert mit Verkaufsmechanismen, als sie ihre Praxis eröffnete. Diese Fertigkeit hilft ihr nun beim Entwickeln von

Pitches für Redakteure.↪→
Given the provided parallel sentence pairs, translate the following English sentence to German:
English: But my imagination would take me to all these wonderful places, where everything was possible.
German: Aber meine Fantasie eröffnete mir viele wunderbaren Orte, an denen alles möglich war.

(b) Perturbed-context prompt

English: ro practicevalue downloadingcoreżDescription Hence tierra Pur SeleAP hrefpick bore Engel delegate We WCF broad quattro bird stru corsategor
". nuc↪→

German: Itemactivityrightarrow früher spend Universität Bull ^Password cantonmys@", largvarphikoamiltonounrenceoking říavctor NickFoot Colors
stoneitosweh epe limits translate↪→

English: ctoo Ski| anth https Baby Platform
German: HERannel/*medialabelignonliteretzt media Mittłurown
Given the provided parallel sentence pairs, translate the following English sentence to German:
English: But my imagination would take me to all these wonderful places, where everything was possible.
German: Aber meine Fantasie eröffnete mir viele wunderbaren Orte, an denen alles möglich war.

(c) Random-context prompt

Figure 1: The figure shows example prompts used in the perturbation experiments for translation quality analysis,
the reference translation (the last line of each example) is shown in green. The examples shown employ the explicit
prompt format.

English: One of the Chinese worked in an amusement park.
German: Ein Chinese arbeitete in einem Vergnügungspark.
English: It was closed for the season.
German: Er war gerade geschlossen.

(a) Gold-context prompt

English: One of the Chinese worked in an house.
German: Ein Chinese arbeitete in einem Haus.
English: It was closed for the season.
German: Er war gerade geschlossen.

(b) Perturbed-context prompt

English: ro practicevalue downloadingcoreżDescription Hence tierra Pur SeleAP hrefpick bore.
German: Itemactivityrightarrow früher spend Universität Bull ^Password.
English: It was closed for the season.
German: Er war gerade geschlossen.

(c) Random-context prompt

Figure 2: The figure shows example prompts used in the perturbation experiments for pronoun resolution analysis,
the reference translation (the last line of each example) is shown in green. The pronoun of interest and its antecedents
are highlighted in underlined blue. The examples shown employ the generic prompt format.

3.3 Evaluation

We evaluate translations using BLEU (Papineni
et al., 2002), CHRF (Popović, 2015), and COMET

(Rei et al., 2022). We also measure and pronoun
translation accuracy in a contrastive force-decoded
setting (CPRO; Müller et al., 2018) and a gen-
erative one (GPRO; Post and Junczys-Dowmunt,
2023). The contrastive pronoun resolution metric
(CPRO) evaluates the models’ accuracy in assigning
a higher score to a sentence containing the correct
pronoun compared to sentences with incorrect pro-
nouns. The generative pronoun resolution metric
(GPRO) assesses models’ accuracy in generating the
correct pronoun during inference. As Post (2018)
points out the importance of providing SacreBLEU
signatures for reproducibility, the details of our
metrics are in Table 1.

metric signature

BLEU nrefs:1|case:mixed|eff:yes|tok:13a|smooth:exp|version:2.4.0
CHRF nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.4.0
COMET https://huggingface.co/Unbabel/wmt22-comet-da

Table 1: Evaluation-metrics signatures

3.4 Prompt Format
Wu et al. (2024) noted that prompt formats sig-
nificantly impact LLMs’ performance, with well-
structured prompts boosting models’ performance.
We use 3 formats from their work as in Fig. 3.1

4 Results and Discussion

This section presents and discusses the experimen-
tal results, covering the performance under the gold
1For TowerInstruct, we add an instruction-following pre-
fix as per its documentation:<|im_start|>user {prompt}
<|im_start|>assistant.
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Sentence Generic prompt Explicit prompt
baseline random perturbed gold random perturbed gold

COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU

EN�DE
Concat Enc-Dec 75.4 23.4 67.9 20.2 75.3 23.4 75.4 23.6 – – – – – –
NLLB 3.3B 84.4 28.2 – – – – – – – – – – – –
EuroLLM-9B-Inst 85.8 28.6 85.2 27.9 85.7 28.8 86.3 **30.8 85.4 28.3 85.7 28.8 **86.4 30.3
Llama-2 7B 79.0 20.8 42.6 01.5 79.8 21.3 81.2 22.0 77.9 20.1 79.8 21.6 81.2 22.8
Llama-2 13B 76.0 02.1 56.8 06.0 81.6 23.2 82.8 25.5 78.4 22.5 67.0 02.2 76.4 01.7
TowerBase 7B 82.8 25.8 82.1 25.7 83.7 25.9 83.8 25.6 83.0 26.3 82.5 26.4 82.0 26.3
TowerBase 13B 82.7 27.1 83.5 27.3 84.2 27.8 85.0 28.9 83.4 27.2 74.9 23.9 78.2 25.8
ALMA 7B 82.9 24.8 77.1 15.7 82.3 23.0 83.4 25.3 82.4 23.4 82.7 22.7 83.7 24.5
ALMA 13B 83.8 26.2 73.7 17.3 83.2 24.9 84.3 27.1 73.7 25.6 83.6 25.6 83.4 27.1
TowerInstruct 7B 84.8 27.3 84.4 26.6 84.8 27.0 85.2 27.5 84.4 26.4 84.7 27.0 85.0 27.1
TowerInstruct 13B 85.1 28.4 84.8 27.2 85.2 28.0 85.6 29.1 84.9 27.5 85.1 27.8 85.4 28.6

EN�FR
Concat Enc-Dec 77.8 35.8 68.2 28.9 77.3 35.4 77.5 36.0 – – – – – –
NLLB 3.3B 84.8 38.5 – – – – – – – – – – – –
EuroLLM-9B-Inst 86.4 40.8 85.9 40.3 86.5 41.3 **86.8 **43.4 86.2 40.5 86.3 41.4 86.7 42.8
Llama-2 7B 81.6 33.2 29.5 01.2 81.8 29.6 82.6 34.7 80.9 31.6 82.0 31.5 82.5 30.9
Llama-2 13B 77.0 17.1 54.7 04.2 83.8 35.5 84.5 38.4 81.1 34.2 81.9 20.7 83.4 06.3
TowerBase 7B 84.7 39.9 83.8 37.1 79.0 10.8 78.7 36.2 84.4 40.0 79.1 13.6 76.5 35.4
TowerBase 13B 79.4 39.5 84.9 41.0 85.1 40.7 85.9 41.9 85.1 40.7 85.4 40.6 69.3 31.7
ALMA 7B 80.8 28.7 52.2 07.1 80.4 25.7 81.1 27.9 80.3 28.9 80.5 27.4 81.3 30.5
ALMA 13B 83.0 33.7 60.0 10.0 82.8 32.7 83.4 33.1 82.9 33.9 82.9 33.9 83.7 35.1
TowerInstruct 7B 85.8 38.1 85.5 35.4 83.4 33.0 86.0 39.6 85.4 36.1 84.1 36.9 85.9 39.1
TowerInstruct 13B 86.2 40.0 86.0 39.3 86.0 40.3 86.4 40.9 86.0 39.5 86.0 40.2 86.2 40.8

Table 2: Translation performance (COMET and BLEU) on IWSLT2017, with random, structurally perturbed and
gold context, for the prompts considered. The best value per column is marked in Bold blue numbers while red
marks the second best value; (**) marks best overall. Enc-Dec is short for the encoder-decoder transformer model.

sentence random perturbed gold
COMET GPRO CPRO COMET GPRO CPRO COMET GPRO CPRO COMET GPRO CPRO

EN�DE
Concat Enc-Dec 66.2 41.7 46.4 61.5 32.6 45.3 66.9 53.5 **60.4 67.0 **56.2 **60.4
NLLB 3.3B **72.3 41.6 32.0 – – – – – – – – –
EuroLLM-9B-Inst 61.5 29.7 54.7 50.9 24.5 51.0 41.6 21.8 47.7 43.7 29.6 51.4
Llama-2 7B 35.0 09.7 45.2 27.6 02.3 46.3 39.3 22.1 46.9 41.6 26.1 49.9
Llama-2 13B 34.2 07.6 45.1 28.0 03.0 45.9 40.1 25.5 49.6 42.7 31.1 56.7
TowerBase 7B 39.6 14.1 46.7 35.0 11.2 45.7 44.0 25.1 47.9 45.9 28.9 50.8
TowerBase 13B 56.6 30.8 46.6 31.8 06.6 46.4 51.6 27.3 49.9 50.2 32.2 53.8
ALMA 7B 52.4 22.1 46.4 30.7 06.8 45.8 46.5 25.6 47.2 49.0 30.6 49.9
ALMA 13B 55.3 24.6 46.9 30.3 05.7 47.5 46.3 29.7 52.2 48.6 35.5 58.5
TowerInstruct 7B 57.0 29.9 49.8 40.7 14.5 58.0 53.9 27.1 48.5 55.2 30.7 51.9
TowerInstruct 13B 56.6 30.8 54.5 53.8 21.8 59.2 51.6 27.8 55.0 60.9 32.2 59.9

EN�FR
Concat Enc-Dec 66.5 51.7 76.5 62.7 51.6 76.2 66.8 57.7 80.5 67.0 **65.0 86.0
NLLB 3.3B **76.3 64.0 36.9 – – – – – – – – –
EuroLLM-9B-Inst 58.5 34.2 06.7 28.8 00.7 17.0 43.2 25.4 11.6 46.9 36.7 13.2
Llama-2 7B 38.0 12.9 90.0 28.7 01.5 64.6 41.9 24.8 64.5 46.1 34.0 68.2
Llama-2 13B 34.1 6.3 89.4 29.1 02.2 49.0 42.5 25.6 59.2 47.1 35.1 63.6
TowerBase 7B 41.5 14.7 **94.5 38.5 09.8 70.2 45.7 26.7 85.9 50.2 36.3 88.1
TowerBase 13B 38.0 10.1 78.3 33.7 05.7 74.3 47.6 28.4 80.1 52.5 38.3 82.1
ALMA 7B 42.6 14.7 11.2 29.1 02.4 05.4 41.7 22.7 09.0 45.4 29.7 10.6
ALMA 13B 45.0 16.5 09.4 30.1 03.0 05.3 44.4 26.7 08.3 48.6 34.4 09.8
TowerInstruct 7B 56.6 35.9 55.1 34.9 04.0 23.8 50.3 29.3 52.6 55.1 39.5 56.5
TowerInstruct 13B 57.0 35.1 11.1 47.9 14.1 04.7 53.1 30.3 12.4 58.1 40.4 13.8

Table 3: This table presents the translation performance measured using COMET, the generative (GPRO) and the
contrastive (CPRO) pronoun-resolution accuracies on ContraPro dataset, with random, structurally perturbed and
gold context, and generic prompt. Random guessing accuracy: 33.3% EN�DE, 50% EN�FR. The best value per
column is marked in Bold blue numbers while red marks the second best value; (**) marks best overall. Enc-Dec is
short for the encoder-decoder transformer model.
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Translate the following <src_lang> source text to <tgt_lang>: (a)
<src_lang>: <src_sentence> <tgt_lang>:

<src_lang>: <src context 1> <tgt_lang>: <tgt context 1> (b)
<src_lang>: <src context 2> <tgt_lang>: <tgt context 2>
<src_lang>: <src sentence> <tgt_lang>:

<src_lang>: <src context 1> <tgt_lang>: <tgt context 1> (c)
<src_lang>: <src context 2> <tgt_lang>: <tgt context 2>
Given the provided parallel sentence pairs, translate the following

<src_lang> sentence to <tgt_lang>:↪→
<src_lang>: <src sentence> <tgt_lang>:

Figure 3: a) sentence-level, b) generic, and c) explicit
prompt formats. tgt context refers to gold translations.

context setup, the perturbation analysis (perfor-
mance under the perturbed and random context
setups), and the attribution analysis looking at the
models’ internals.

4.1 Performance With the Gold Context

Overall translation performance. Table 2 shows
the translation performance (BLEU, COMET) on
IWSLT2017 in the sentence-level baseline setup,
the generic prompt setup, and the explicit prompt
setups. CHRF results are in a separate table (Ta-
ble 4) for better readability. We analyze the results
of different model categories and summarize the
observations and their intuitions in the following
paragraphs.

We notice that document-level generic prompt-
ing improves translation performance of all models
over the sentence-level baseline. This is expected
since document-level prompting gives the model ac-
cess to inter-sentential context. Moreover, explicit
prompting improves instruction-finetuned models’
performance, while strong base-models (such as
TowerBase 13B) degrade in performance. This is
also aligned with expectations of the sensitivity
of models to the prompt format (Wu et al., 2024),
and it highlights the importance of aligning train-
ing and inference prompts. However, as the gains
with explicit prompting are not substantial even for
instruction-tuned models, we opt for the generic
prompt format for the pronoun resolution experi-
ments.

For models under consideration in this work,
decoder-only LLMs outperform encoder-decoder
models at overall translation. This aligns with pre-
vious research findings of the potential of LLMs
as a new paradigm for document-level translation
(Wang et al., 2023). Interestingly, for both language
pairs, EuroLLM-9B-Inst outperforms all models in
both prompting formats. In the explicit prompting
format, TowerInstruct 13B achieves the second-

highest performance, while in the generic format,
TowerBase 13B comes in second (for EN�FR).
EuroLLM-9B-Inst’s recipe of multilingual pretrain-
ing and instruction tuning seems to have better
effects on improving the translation performance
compared to the continued multilingual pretrain-
ing and translation-specific fine-tuning of Tower
models. ALMA models lag behind Tower models
despite both employing a two-step fine-tuning strat-
egy on multilingual and parallel data. This raises
the need for a deeper investigation into how various
design choices (such as the selection and number
of finetuning languages, the choice of datasets, and
the configuration of hyper-parameters) influence
downstream performance.

Further analyzing Table 2, we observe that
Llama-2 13B model has a noticeably low perfor-
mance with explicit gold context for both language
pairs. While surprising at first sight, we argue that
as the model is pretrained mainly on English data,
it might not be sufficient for this task. We look at
the translations produced by the model and find
that they are mostly repeated words or outputs in
the source language instead of the target language.

Pronoun resolution performance. Table 3 shows
the generative and contrastive pronoun accuracy
and translation performance (COMET) on Con-
traPro dataset.

Similar to the overall translation performance,
We notice that document-level prompting outper-
forms sentence-level prompting in pronoun resolu-
tion performance. A key finding from this analysis
is the contrasting ranking compared to the over-
all translation performance: both encoder-decoder
baselines outperform all LLMs in terms of GPRO

and COMET scores. Even with gold context, LLMs’
performance remains notably poor, with accuracy
at or below the random guessing accuracy (33.3%
for EN�DE, and 50% for EN�FR). This suggests
that there is room to improve LLMs’ translation
finetuning to better handle context-dependent dis-
course phenomena.

However, it is important to note that except for
the encoder-decoder transformer model that we
trained from scratch, we don’t have access to other
models’ training data, therefore, we cannot guar-
antee that ContraPro is unseen and thus that the
evaluation is fair. In particular, NLLB’s perfor-
mance far above chance at the sentence level may
be due to such contamination, as sentence-level
evaluation forces it to guess the pronoun gender

131



Sent. Genric Explicit
base. rand. pert. gold rand. pert. gold

EN�DE
Concat Enc-Dec 53.0 50.7 53.0 53.1 – – –
NLLB 3.3B 59.7 – – – – – –
EuroLLM-9B-Inst 59.4 58.8 59.1 60.4 59.2 59.5 **60.7
Llama-2 7B 51.2 12.1 51.3 52.2 51.0 52.0 53.3
Llama-2 13B 35.1 17.9 53.5 54.8 52.2 32.5 33.5
TowerBase 7B 56.9 56.7 57.0 56.4 57.1 56.8 56.5
TowerBase 13B 57.8 57.9 58.3 59.1 57.9 51.7 54.8
ALMA 7B 54.8 46.6 53.0 54.8 54.5 54.2 55.4
ALMA 13B 56.6 43.5 55.2 56.8 56.2 56.2 57.4
TowerInstruct 7B 57.9 57.4 57.7 58.1 57.4 57.7 57.9
TowerInstruct 13B 58.9 58.2 58.6 59.4 58.2 58.5 59.1

EN�FR
Concat Enc-Dec 60.9 56.4 60.9 61.3 – – –
NLLB 3.3B 65.9 – – – – – –
EuroLLM-9B-Inst 65.6 65.2 66.0 **67.4 65.8 66.4 67.3
Llama-2 7B 59.1 06.5 58.3 60.0 59.0 59.2 59.4
Llama-2 13B 55.6 15.1 61.8 63.2 60.0 59.2 51.7
TowerBase 7B 65.5 64.6 44.2 58.9 65.5 48.4 58.5
TowerBase 13B 64.4 66.2 65.9 66.6 66.0 65.8 55.2
ALMA 7B 56.6 20.4 54.9 55.8 56.6 55.6 57.9
ALMA 13B 59.9 25.3 59.8 60.4 59.7 60.5 61.4
TowerInstruct 7B 64.2 63.0 62.8 65.2 63.3 64.3 64.9
TowerInstruct 13B 65.2 64.9 65.4 65.9 64.9 65.5 65.6

Table 4: CHRF scores on IWSLT2017 test data for the sentence-level baseline and the random, structurally perturbed
and gold context, for the prompts considered. The best value per column is marked in Bold blue numbers while red
marks the second best value; (**) marks best overall. Enc-Dec is short for the encoder-decoder transformer model.

without antecedent information.
Contrastive evaluation measures the classifica-

tion accuracy of models which does not neces-
sarily correlate with the generative training objec-
tive. As suggested by Post and Junczys-Dowmunt
(2023), generative scores are better at discrimi-
nating document-level systems compared to con-
trastive scores, which is what we notice in CPRO

results where we see surprising trends, with Tower-
Base 7B leading in EN�FR and TowerInstruct 13B
performing comparably to the Concat Enc-Dec
model in EN�DE which doesn’t align with their
GPRO and COMET performance on the data.

4.2 Perturbation Analysis
Structurally perturbed context. From Table 2,
we see that structurally perturbing the context has a
minimal impact on overall translation performance.
All models exhibit only a slight degradation in
BLEU, COMET, and CHRF scores when provided
with a perturbed context. However, a closer
look at the impact of context perturbation on
pronoun resolution performance (Table 3) reveals
more pronounced effects. Specifically, there is a
notable decrease in GPRO performance, ranging
from −5 to −10 points, under perturbed context
conditions. Nevertheless, the similar level of

performance reduction across models suggests
that no model stands out in its ability to leverage
context effectively. This can be attributed to the
fact that none of the models are explicitly trained
for context utilization.

Random context. Looking at models’ perfor-
mance with total random tokens, we find that on
IWSLT data, EuroLLM-9B-Inst and Tower mod-
els (the best at translation) are robust to random
context and only degrade slightly in performance,
aligning with previous observations of the mini-
mal effect of context perturbation on translation
performance. Additionally, those models (except
EuroLLM-9B-Inst for EN�FR) show the least dif-
ference in GPRO performance between gold and
random context setups among all LLMs. Ro-
bustness to total random context can be linked
to lack of proper context utilization. Although
the TowerBlocks dataset used to finetune TowerIn-
struct models includes context-aware data (as per
the dataset card2), we hypothesize that general
fine-tuning alone may not be sufficient for improv-
ing discourse phenomena performance. Explicit,
context-aware fine-tuning might be required to ad-

2https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2
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dress these challenges effectively.
Further analyzing Table 2, it’s noteworthy that

the TowerBase 7B model performs better with ran-
dom context as compared to gold context, even
though the latter resembles a few-shot learning sce-
nario (Reinauer et al., 2023). That said, we point
out that its translation performance is suboptimal,
as it is an intermediate model between the base
model Llama-2 7B and the instruction-tuned model
TowerInstruct 7B designed specifically for transla-
tion.

4.3 Attribution Analysis

We analyze models’ internals to see how much
the relevant context contributes to the outputs. Fig-
ures 4a and 4b present attribution percentages of an-
tecedent tokens (relevant context) as well as of the
whole context using ALTI-Logit and input-erasure
methods, respectively.

Looking at both attribution methods, we see that
for EuroLLM-9B-Inst and TowerInstruct 7B (the
best two models at translation among the 5 models
tested) antecedent tokens have the lowest attribu-
tion percentage to the output. Even though for
the TowerInstruct 7B model, overall context to-
kens have the highest attribution percentage. This
suggests that there is a need to explicitly finetune
translation LLMs to focus on relevant context at
inference time.

However, unlike the larger differences in rele-
vant context and overall context attributions ob-
served for encoder-decoder models by Mohammed
and Niculae (2024), we find no striking differ-
ences or clear patterns between the contributions
for LLMs. This might be due to the fact that the
models have similar backbone structures.

5 Related Work

Context utilization assessment. Works on
assessing context utilization in machine translation
include the work of Sarti et al. (2023), who
build an end-to-end interpretability framework
to quantify the plausibility of context-aware
encoder-decoder machine translation models. They
leverage model internals to contrastively identify
context-sensitive target tokens in generated texts
and link them to contextual cues justifying their
prediction. Using their approach, they were able
to consistently detect context-sensitive tokens
and their disambiguating rationales across several
datasets, models and discourse phenomena.

Inspired by this line of research, we evaluate
context utilization of LLMs as a possible new
paradigm for context-aware translation.

Perturbation and attribution analysis. There
are several works that used attribution and
perturbation techniques to understand the inner
workings of translation LLMs, mostly focusing
on the in-context learning (ICL) paradigm —a
setup where LLMs “learn” to perform new tasks
during inference by being provided with few
task demonstrations in the input prompt. Zaranis
et al. (2024) use input attribution methods (ALTI)
to examine context contributions in translation
LLMs within the ICL paradigm. Their findings
indicate that the source segments of few-shot
examples contribute more significantly than their
corresponding target segments, parallel-data
fine-tuning alters contribution patterns, and context
contributions exhibit a positional bias. Raunak
et al. (2023) perturb in-domain translations to
better understand their role in ICL. They perform
asymmetric perturbation of source-target mappings
and find that target perturbations has more negative
effect on the translation performance compared to
source perturbations. Zhu et al. (2024) also perturb
the in-context examples by providing unrelated
task (summarization) examples and find that
LLMs are not sensitive to the perturbation. Our
work combines both interpretability techniques
(perturbation and attribution methods) and focuses
on context-aware translation task.

LLMs for document-level machine translation.
The line of research on adapting LLMs for
document-level translation using techniques like
LLMs fusion with translation models (Petrick et al.,
2023), finetuning LLMs on parallel document-level
data (Wu et al., 2024), or a mix of sentence-level
and document-level data (Li et al., 2024), generally
evaluates on translation metrics and discourse
phenomenon accuracy. We complement such
evaluations with a finer grained strategy that
focuses on the role of context.

Gender bias. Although gender bias does not di-
rectly impact our analysis of pronoun resolution —,
given that the referents in the ContraPro data are
common nouns with clear grammatical gender and,
in most cases (the entire German dataset and at least
half of the French dataset), are non-human—we
recognize that gender bias remains a significant
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Figure 4: Attribution percentages assigned to antecedent tokens (relevant context) and the entire context tokens
when force-decoding the correct pronoun in ContraPro data. (a) shows results from ALTI-Logit and (b) displays
results from input-erasure attribution methods.

concern for machine translation models and LLMs,
as widely explored in research (Rudinger et al.,
2018; Zhao et al., 2018; Currey et al., 2022; Rar-
rick et al., 2023)

6 Conclusion

We use interpretability tools (perturbation and at-
tribution techniques) to analyze LLMs’ context-
utilization in document-level translation. Our ex-
periments suggest that multilingual pretraining and
translation-specific finetuning of LLMs pushes
state-of-the-art translation performance beyond
encoder-decoder models. However, we highlight
that looking at discourse phenomena performance,
LLMs show room for improvement. We argue
that more care is needed before adopting LLMs
as the new standard for document-level transla-
tion, and more focused evaluation must be consid-
ered. Future research directions include enhancing
context-aware translation capabilities of LLMs, po-
tentially through explicit finetuning, and creating
datasets with supporting-context annotations for
other discourse phenomena to enable extending
context-utilization analysis to those phenomena.

7 Limitations

Even though some API-only LLMs (GPT-3.5
and GPT-4) show significant translation improve-
ment compared to encoder-decoder document-level
transformers and commercial translation systems
(Wang et al., 2023), our analysis approach relies
on access to model internals in order to be able
to compute attributions of input tokens. Thus, we

only used open-source LLMs in our study.
Based on the availability of datasets with context-

dependent linguistic phenomena that include sup-
porting context annotations (ContraPro), we exper-
imented only on EN�DE and EN�FR. These two
languages belong to the same language family; we
leave it to future work to experiment on general
translation on other language families.

We chose well-established evaluation metrics in
the literature to assess pronoun resolution accu-
racy. However, we acknowledge the limitations of
those metrics. The contrastive metric (CPRO) is not
aligned with the generative training objective of
models and the generative metric (GPRO) misses
cases where the model generates the correct pro-
noun in a different location in the sentence than the
target location.

Due to computational constraints, we were only
able to perform the attribution analysis on a small
set of models. We hope our work inspires more
research into understanding the inner-workings of
translation models in context utilization.

For all models except the transformer encoder-
decoder model trained from scratch, we do not
have details about their training data. This trend
of releasing and building on models with secret
training data is concerning because it makes fair
evaluation impossible.

In our work, we focused on a fine-grained eval-
uation of context use on a specific phenomenon.
Nonetheless, pretrained context-aware metrics
could offer more accurate insights into overall mod-
els’ performance on context use.
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8 Ethics Statement

Nowadays, machine translation is a widely adopted
technology, sometimes in sensitive, high-risk set-
tings. Even though we propose a fine-grained ap-
proach to assessing context utilization, and high-
light its importance as we see that improvements
in translation performance does not necessarily re-
flect in discourse phenomena performance, we still
rely on automatic evaluation which is imperfect.
For systems deployed in critical scenarios, we be-
lieve a nuanced case-by-case evaluation is always
necessary.
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A Sustainability statement

Our experiments with 13B parameter models run
in 95h on 2 GPUs NVIDIA A100 PCIe, and draw
81.69 kWh. Based in the Netherlands, this has
a carbon footprint of 30.58 kg CO2e, which is
equivalent to 2.78 tree-years. For all other models,
the experiments run in 502h on 1 GPU NVIDIA
A100 PCIe, and draw 222.08 kWh. Based in the
Netherlands, this has a carbon footprint of 83.13
kg CO2e, which is equivalent to 7.56 tree-years
(Lannelongue et al., 2021).
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