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Abstract

Automatic sign language translation has seen
significant advancements, driven by progress in
computer vision and natural language process-
ing. While end to end sign-to-text translation
systems are available, many systems still rely
on a gloss-based representation—an intermedi-
ate symbolic representation that functions as a
bridge between sign language and its written
counterpart. This paper focuses on the gloss-to-
text (gloss2text) task, a key step in the sign-to-
text translation pipeline, which has traditionally
been addressed using autoregressive (AR) mod-
eling approaches. In this study, we propose
the use of non-autoregressive (NAR) model-
ing techniques, including non-autoregressive
Transformer (NAT) and diffusion models, tai-
lored to the unique characteristics of gloss2text.
Specifically, we introduce PointerLevT, a novel
NAT-based model designed to enhance perfor-
mance in this task. Our experiments demon-
strate that NAR models achieve higher accu-
racy than pre-trained AR models with less data,
while also matching the performance of fine-
tuned AR models such as mBART. Further-
more, we evaluate inference speed and find
that NAR models benefit from parallel gener-
ation, resulting in faster inference. However,
they require more time to achieve an optimal
balance between accuracy and speed, partic-
ularly in the multistep denoising process of
diffusion models. All our code is publicly
available at https://github.com/louisefz/
non-autoregressive_signlang

1 Introduction

Deafness and hearing loss affect over 1.5 billion
people worldwide, with 430 million experiencing
disabling hearing loss!. Sign languages serve as
an alternative to verbal speech, yet communication
barriers between deaf individuals and non-sign lan-
guage users can lead to social isolation and limited

"https://www.who.int/health-topics/hearing-
loss#tab=tab
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Figure 1: Framed sign video (sourced from (Borstell,
2022)) is converted into glosses, and then to texts.

access to essential services. To mitigate these chal-
lenges, researchers have developed sign language
translation systems such as WeCapable? and Hand
Talk®. However, most existing systems focus on
recognizing individual signs rather than capturing
the full grammatical complexity of sign languages
(Tolba and Elons, 2013; Masood et al., 2018; Rast-
goo et al., 2021).

A promising alternative is sign glosses, a writ-
ten representation of sign language that captures
the core meaning of signs*. Unlike standard writ-
ten texts, glosses follow distinct linguistic rules
in grammar, word selection, and sequential ex-
pression. Converting sign glosses into natural
text—known as the gloss-to-text (gloss2text) prob-
lem (see Figure 1)—is typically framed as a low-
resource machine translation task. Due to the
scarcity of parallel gloss-text data, traditional ap-
proaches often rely on data augmentation and AR
training to adapt neural models for this task (Cam-
goz et al., 2018; Yin and Read, 2020).

AR models are widely used in NLP and have
demonstrated strong performance in numerous
tasks (Gillioz et al., 2020; Black et al., 2022;
Bevilacqua et al., 2022). However, they come with
inherent limitations, including strong dependence

Zhttps://wecapable.com/tools/text-to-sign-language-
converter/

3https://apps.apple.com/us/app/hand-talk-asl-sign-
language/id659816995

*https://www.lifeprint.com/asl101/topics/gloss.htm
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on large datasets for effective learning, error ac-
cumulation during sequential generation, and high
computational costs due to their step-by-step de-
coding nature. Given these constraints, and consid-
ering the unique characteristics of the gloss2text
task—namely, its low-resource setting, high lexical
overlap between glosses and text, and the chal-
lenge of inferring natural language from simplified
gloss sequences—we explore NAR modeling as a
promising alternative.

Our approach primarily focuses on improving
effectiveness while also considering efficiency as a
complementary aspect. To achieve this, we investi-
gate two types of NAR models. The first approach
is based on the edit-based Levenshtein Transformer
(LevT) (Gu et al., 2019), which refines predictions
iteratively through insertion and deletion opera-
tions. To enhance its performance, we introduce
PointerLevT, an improved version that integrates
a Pointer Network, allowing for better alignment
between glosses and their corresponding textual
representations. Edit-based NAR models are par-
ticularly well-suited for tasks requiring minimal
corrections or modifications, balancing effective-
ness and efficiency. The second approach leverages
diffusion-based sequence models, including vanilla
diffusion models (Ho et al., 2020) and DiffuSeq
(Gong et al., 2022, 2023). These models condi-
tion their sampling steps on sign glosses, guiding
the model through a probabilistic denoising pro-
cess that refines a noisy sequence into the target
text. Diffusion models offer robustness against
noise, better handle variability in input, and provide
stochasticity for possible exploration of text gener-
ation, which show potential to enhance gloss2text
generation accuracy.

Our experiments show that these NAR models
outperform AR counterparts trained from scratch
on the same small dataset, demonstrating advan-
tages in either effectiveness, efficiency, or both.
This highlights the potential of NAR approaches
for gloss2text task and similar low-resource and
noisy-input NLP problems such as grammatical
error correction, post-editing, and text infilling or
modification.

2 Related Work

2.1 Gloss2Text

The gloss2text phase in the pipeline of sign-to-text
translation is treated as a low-resource machine
translation task (Camgoz et al., 2018; Yin and Read,

2020). Most existing studies have focused on en-
larging available datasets and validating AR model-
ing approaches. To address the low-resource chal-
lenge, data augmentation techniques have been em-
ployed, including rule-based heuristics that exploit
lexical similarities and syntactic variations between
sign and spoken languages to generate artificial
gloss-text pairs (Moryossef et al., 2021). To further
mitigate resource limitations and enhance trans-
lation quality, ConSLT, a token-level contrastive
learning framework, was proposed. It processes
sign glosses through a Transformer model twice to
generate positive pairs while treating tokens out-
side the sentence as negative pairs (Fu et al., 2022).
Additionally, part-of-speech (POS) tags have been
utilized to refine data augmentation strategies and
improve the quality of generated samples (Liu et al.,
2023).

2.2 Edit-based Non-autoregressive
Transformer

NAR models offer fast inference but often struggle
with generation quality. To address this issue, edit-
based models have been developed to enhance ef-
fectiveness by refining generated outputs iteratively.
Iteration-based NAR models were introduced to
refine outputs. These models either use the pre-
vious iteration’s results or a noisy version of the
target sentence to initialize the decoder input (Lee
et al., 2020). Insertion Transformer determines
both the content to insert and its precise place-
ment by leveraging concatenated slot representa-
tions (Stern et al., 2019). Levenshtein Transformer
(LevT) employs a dual policy learning strategy dur-
ing training and utilizes three distinct classifiers
to determine the placement and quantity of token
insertions, manage token deletions, and predict to-
ken content (Gu et al., 2019). ReorderNAT adopts
a two-decoder approach. One decoder, equipped
with cross-attention to the encoder, restructures the
source sentence to align more closely with the tar-
get word order, thereby enabling more accurate
word position decisions (Ran et al., 2021). Syntac-
tic labels are incorporated as a form of supervision
to enhance the learning process of discrete latent
variables (Akoury et al., 2019). Bao et al. (Bao
et al., 2022) developed a glancing sampling tech-
nique to effectively optimize latent variables.

2.3 Diffusion Models for Text Generation

Diffusion models, originally designed as latent vari-
able models for continuous data, have been adapted
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for text generation and are now recognized as a type
of NAR model in the field of NLP (Li et al., 2023).
These models typically operate through a multi-
step process of sequential noising and denoising,
gradually refining random noise into meaningful
data samples (see Formulas 1 - 2). When applied
to NAR text generation tasks, diffusion models
iteratively refine intermediate outputs based on in-
put data, offering a promising approach for han-
dling complex control conditions and producing
high-quality text (Li et al., 2022). Their ability to
model intricate dependencies and generate coher-
ent sequences through iterative denoising makes
them a compelling alternative to traditional NAR
approaches. Diffusion-LM incorporated an embed-
ding layer into the diffusion model to turn discrete
tokens into a continuous form, to be able to adapt
diffusion’s attribute (Li et al., 2022). DiffuSeq in-
troduced a partial noising strategy to integrate con-
ditional text with the continuous diffusion process
(Gong et al., 2022, 2023).

q(Xt‘thl) = N(Xt7 v 1-— ﬂtxt,l, Btl) (1)
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The loss function in diffusion models typically
minimizes the difference between the predicted
noise and the actual noise added during the forward
process. Evidence Lower Bound (ELBO) is used to
represent the divergence between the forward and
backward processes in the diffusion model (see
Formula 3). In diffusion models, it is typically
assumed that Yg(z¢, t) is fixed (e.g., Xg = [B¢1), so
the KL divergence simplifies to the difference in
means (MSE) (see Formula 4).

q(mliT|m0):| (3)
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3 LevT and PointerLevT for Gloss2Text

Considering the words shared between glosses and
texts, the Levenshtein Transformer (LevT) (Gu
et al., 2019) is chosen to fit our task. In addition,
we also propose PointerLevT with improved per-
formance.

3.1 Levenshtein Transformer

The Levenshtein Transformer (LevT) follows an
encoder-decoder architecture. Similar to a vanilla
Transformer, LevT’s encoder processes the input
sequence through layers of self-attention and feed-
forward networks, creating a set of representations
that encapsulate the contextual information of the
input. The decoder of LevT, operating in a NAR
mode, uses these encoded representations (H) to-
gether with input (H’) to generate outputs.

In the training process, its decoder simultane-
ously passes hidden states into the three classifiers,
and the training objective for LevT includes dele-
tion loss, insertion loss, and placeholder insertion
loss (see Formula 5).

During inference, the three operations are ap-
plied sequentially in each iteration: first deleting
tokens, then inserting placeholders, and finally re-
placing placeholders with new tokens. The outputs
from the previous iteration serves as the input of
the next iteration in the decoder during the infer-
ence stage, and iterations continue until accurate
output is generated.

[:(19) = Eydel"‘ddel [ Z log ﬂ—gd(dm@ ydel)]
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3.2 PointerLevT

LevT reorders the sequence through editing opera-
tions in the inference stage, with time complexity
of O(n x m). To reduce the number of edit op-
erations and accelerate the inference time in the
decoder part, we propose PointerLevT to incorpo-
rate a reordering method in the encoder part, viz.
the pointer network (Vinyals et al., 2015). Theo-
retically, the time complexity can be reduced to
O(nlogm). In the context of the gloss2text task,
pointer neural networks help solve position prob-
lems and are expected to reduce the number of edit
operations in the LevT decoder.

This involves putting the traditional inter-
attention between the decoder’s query and the
encoder’s key with intra-attention within the en-
coder itself, simplifying the model architecture,
and replacing Bahdanau attention (Bahdanau et al.,
2014) with self-attention from vanilla Transformer
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Figure 2: Overview of the LevT architecture (highlighted in red), illustrating its encoder and the decoding process of
its decoder during both training and inference stages (Gu et al., 2019). The architecture of PointerLevT (highlighted

in green) is also presented. The pointer network reorders
are used to form the reordered word embeddings. The tr:

the positions of hidden states, and these reordered positions
aining and inference decoders are shared between LevT and

PointerLevT, with both decoders taking as input of both the word embeddings (EMB or EMB’) and the encoder’s

final hidden states (H or H’).

(Vaswani et al., 2017). This change aims to reduce
the complexity of the model architecture. Once the
attention scores are obtained, the reordered encoder
output is generated by the multiplication between
the attention scores and encoder outputs (value). To
determine the reordered source sequences, argmax
is applied to the attention scores to get the reordered
positions of the source sequence, which can be seen
as the encoder’s prediction. To ensure there is no
duplication of predicted argmax positions, we use
the Sinkhorn layer (Mena et al., 2018) which are
differentiable modules inspired by the Sinkhorn
algorithm (Sinkhorn and Knopp, 1967) and alter-
nately rescales all rows and all columns of the ma-
trix to sum to 1 as the normalization function (see
Appendix A). In this setup, the reordering loss is
calculated between the predicted reordered source
sequences and the gold standard sequences using
the cross-entropy function. There are pseudo codes
for the PointerLevT modeling (see Figures 2-3 for
details).

In terms of the loss function for this architecture,
in addition to the three types of loss in the original

LevT (deletion, insertion, and placeholder), there is
an additional loss component for reordering. This
reordering loss is calculated between the correctly
ordered sentences and the predicted reordered input
of the encoder (see Formula 6).

(©)

LpointerLevt = OlLCE(ytme, yreorder_pred) + Lievr

4 Diffusion Modeling for Gloss2Text

The motivation for using diffusion models in the
gloss2text problem lies in the nature of sign glosses,
which are written representations of sign gestures
and lack the syntactic and semantic richness of
standard texts. This makes them comparable to par-
tially noised texts, creating an opportunity for mod-
els to explore denoising pathways for original sen-
tence recovery. In this context, glosses serve as con-
ditions that guide the denoising process. Guided by
this intuition, we employ diffusion models, which
gradually generate complex text distributions from
standard Gaussian noise, effectively capturing the
diversity and uncertainty between glosses and texts
for potentially improved mapping.
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Algorithm 1 Levenshtein Transformer with Pointer Network for Reordering

: Input: Input sequence X, Target sequence Y, Encoder layers Lenc, Decoder
layers Lge., Vocabulary size V'

2: Output: Output sequence by Levenshtein Transformer’s decoder

3: Initialization:

4: Initialize encoder with L, layers and vocabulary size V'

5: Initialize decoder with Ly layers and vocabulary size V'

6: Initialize pointer network

7

8:

9:

=

: function ENCODE(X)
Encoded representation H < Encoder(X)
return H
10: end function
11: function POINTERNETWORK (X ,H)
12: Reordered Position P < argmax(Sinkhorn(Self-attention(H)))
13: Reordered Encoded representation H' < H - Self-attention(H)
14: Reordered Input X’ + P(X)
15: return H', X’
16: end function
17: function DECODE(H’, Yprev)
18: if iteration == 0 then
19: Yprev + PointerNetwork.Reorder(X")
20: end if
21: while ITERATION < MAX do

22: Decoded Output Ypreq ¢ Decoder(H', Yprev)
23: if Yjrca ==Y then

24: break

25: end if

26: end while

27: return Yp,cq

28: end function

29: Training:

30: for each epoch in epochs do
31: for each (X, Yreordered> Ygood) in dataset do

32: H + Encode(X)

33: X' + Initialize with start token

34: Ypred ¢ Decode(H’, X')

35: Calculate loss: Loss < o« - CrossEntropy(X', Yieordered) +
LevT three edit losses)

36: Backpropagate loss and update model parameters

37 end for

38: end for

Figure 3: Pseudocode of PointerLevT process

In diffusion model, sign glosses serve as condi-
tions to guide the denoising process for controllable
generation. Different from label-based controllable
generation by diffusion models which reply on dis-
tinct labels such as classifier guidance (Li et al.,
2022) and classifier-free guidance (Ho and Sali-
mans, 2022) diffusion models, Seq2Seq generation
is condition on source sequences, not on labels.
In order to produce a target sequence wy condi-
tioned on the source sequence, we use DiffuSeq’s
method (Gong et al., 2022) (see Figure 4) to con-
catenate source x with target y (see Formula 7),
and only partially noise targe sequences and de-
noise the target with the unnoised source. Word
embedding from an existing pre-trained language
model is used to convert discrete tokens into em-
beddings for diffusion continuous attributes at the
begining of the forward process, and to turn the
continuous representation to tokens at the end of
the denoising process.

z: =X: ®y:, forte[0,T] 7

The training loss function (Formula 8) is based
on the variational latent boundary (VLB), aiming
to optimize the variational lower bound on the ob-

Reverse process —>  Forward process €<—  Gaussian Noise Rounding
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- 0.,
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Figure 4: DiffuSeq noising and denoising processes
with embedding and rounding through embedding layer,
sourced from (Gong et al., 2022)

jective function. In this case, the objective function
simplifies the KL divergence into end-to-end MSE
(Formulas 9 - 11, see Appendix B for more details).

T
Esimple — Z HYO - f@(Zt,t)HQ

t=2
+ |[EMB(w”) — fo(z1,1)|*
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5 Experimental

5.1 Datasets

Our experiments are carried out using Ameri-
can sign language (ASL) datasets. The primary
dataset used is the ASLG-PC12 corpus (Othman
and Jemni, 2012), a substantial parallel corpus
that aligns English written texts with ASL glosses.
Given that certain experiments involve training
models from scratch, the size of the ASLG-PC12
gloss-text parallel corpus is relatively small. To ad-
dress this issue, data augmentation techniques are
employed to generate additional artificial datasets.
Artificial glosses are generated from correspond-
ing standard texts from Wikipedia®, leveraging the
features of sign glosses based on sign linguistics.
Linguistic features of sign glosses are analyzed
from differences between sign language glosses
and spoken language, which includes the lack of
word inflection, the omission of punctuation and
individual words, and syntactic diversity. Conse-
quently, the corresponding heuristics for generating
pseudo-glosses from spoken language involve the
lemmatization of spoken words, POS-dependent
and random word deletion, and random word per-
mutation (Moryossef et al., 2021). This research
follows these rules for data augmentation, ensuring
the creation of robust pseudo-gloss datasets (See
Table 1 for more dataset details).

The overall datasets are divided into train, val-
idation and test datasets with proportion of 70%,

Shttps://www.kaggle.com/datasets/mikeortman/wikipedia-
sentences/data
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Datasets Authentic  Artificial
# sentences 87,710 87,710

# words 1,151,110 1,687,804
# glosses 1,029,995 1,079,168
word vocab 22,070 120,273
gloss vocab 16,120 75,069
avg sentence len  13.124 19.243
avg gloss len 11.743 12.304
Train 61,397 61,397
Validation 13,157 13,156
Test 13,157 13,156

Table 1: Dataset used in experiments

15% and 15%. This means that our test dataset is
a mixture of both artificial (through data augmen-
tation) and real parallel data. To check how our
model performs on real data, we create two test
datasets. The first batch is the real dataset in which
the parallel data is true glosses with corresponding
true standard text translation (Real test data); while
the second one is all the test data, the mixture of
both authentic and artificial test data (All test data).

5.2 Evaluation Metrics

To evaluate the performance of different architec-
tures, automatic metrics are used to assess both
effectiveness and efficiency. Effectiveness metrics
measure how well the predicted outputs align with
reference texts, while efficiency metrics focus on
the computational cost of model training and infer-
ence.

Effectiveness metrics include several measures
to assess the quality of generated outputs. Length
comparison helps determine whether the predic-
tions are appropriately sized relative to the refer-
ence texts, highlighting potential tendencies toward
overly brief or excessively long outputs. Accuracy
measures whether the model correctly generates
words and tokens, with token-level accuracy of-
fering a finer-grained analysis to detect formatting
errors. Levenshtein distance (Levenshtein et al.,
1966) evaluates the syntactical alignment of pre-
dicted sequences by counting the minimum number
of insertions, deletions, and substitutions required
to match reference texts. Additionally, the BLEU
score (Papineni et al., 2002) assesses the fluency
and adequacy of generated sequences by compar-
ing n-gram overlaps with reference texts. We make
use of the BLEU score implementation provided

by the NLTK package®.

Efficiency metrics focus on computational per-
formance, specifically training time and inference
time. Training time refers to the total duration
required to optimize the model across multiple
epochs, excluding validation time. Inference time
measures the speed at which a trained model pro-
cesses new inputs and generates outputs.

5.3 Model Setups

LevT and PointerLevT Both models are encoder-
decoder models with 6 layers each, using multi-
headed attention, layer normalization, dropout, and
embeddings of size 512 from "facebook/mbart-
large-cc25". Both models perform up to 10 de-
coding iterations during inference; they are each
trained on 1 NVIDIA A100 GPU.

DiffuSeq DiffuSeq incorporates source texts
during training, converting both source and tar-
get texts into tensors using a pre-trained BERT
tokenizer (“bert-base-uncased”) with a vocabu-
lary size of 30522 and dgimension = 128. The
noising process applies a square root scheduler

pr=1-
sors, using an attention mask (0 for source, 1 for
target) to distinguish them. Initially, noise is added
uniformly to both tensors, but at the final noising
timestep, source tensors are replaced with their
original state, resulting in noised target tensors con-
catenated with unnoised source tensors. This con-
catenated state serves as the input for the denoising
process, which treats both tensors uniformly. At
the final denoising step, source tensors are reverted
to their initial noising state. The process operates
over 2000 timesteps. Multiple seeds are used to
select the best outputs through Minimal Bayes Risk
(MBR) decoding (Kumar and Byrne, 2004). The
model is trained on 1 NVIDIA A100 GPU.

W, % + 0.0001 exclusively to target ten-

5.4 Baselines

Two types of autoregressive models serve as base-
line models, including pre-trained language mod-
els, mBART (Chipman et al., 2022) and mT5 (Xue
et al., 2020), as well as a small-scale mBART (of
the same size as our non-autoregressive models)
trained from scratch through knowledge distillation.
Besides, a vanilla diffusion model also serves as a
baseline for our condition-based diffusion model.
mBART and mT5 are multilingual encoder-
decoder models designed for sequence generation

Shttps://www.nltk.org/api/nltk.translate.bleu_score.html
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tasks. mBART ("mbart-large-cc25") uses 12 en-
coder and 12 decoder layers with 250,027 tokens,
1024 embedding size, and GELU activations. mT5
("mt5-large") has 24 layers each for the encoder
and decoder, 250,112 tokens, and similar GELU-
based feed-forward layers with relative attention
bias. mBART and mT?5 are fine-tuned to adapt our
dataset, serving as overall baseline models.

KD-mBART applies knowledge distillation us-
ing a smaller mBART student model (6 layers,
512 embeddings, 8 attention heads, and 2048 feed-
forward dimensions) distilled from a fine-tuned
mBART pre-trained teacher model.

The vanilla diffusion employs a 2000-step diffu-
sion process with a square root scheduler for noise

generation, defined by 5; = 1 — \/% + 0.0001,

where T' = 2000. During denoising, timestep em-
beddings are integrated into a Transformer encoder
and combined with position and input embeddings
to incorporate temporal context. Instead of KL
divergence, which can lead to instability and com-
plexity, the model adopts MSE for more stable
training. To prevent out-of-vocabulary issues, the
vocabulary size is set to 13000, and custom word
embeddings (dimoegel = 128) are jointly trained with
the diffusion loss to optimize computational effi-
ciency and control model size.

The details of models’ used in the experiments
are displayed in Table 3 in Appendix, including
model’s number of parameters, batch size of train-
ing and test, number of epochs or steps during
training, the use of GPU during training and infer-
ence.

6 Results

6.1 Effectiveness Discussion

For the two edit-based models, the PointerLevT
model demonstrates slightly better performance
than the LevT model across most metrics. Specif-
ically, PointerLevT achieves higher BLEU scores
compared to LevT. Its word- and token-level ac-
curacies are comparable to those of the fine-tuned
mT5 model. Additionally, PointerLevT requires
fewer edit operations, as indicated by a lower Lev-
enshtein distance, particularly during inference on
the real test set. This suggests that PointerLevT not
only generates slightly more accurate sequences
but also requires fewer modifications to match ref-
erence output. However, the performance differ-
ence between the two models remains marginal in
general.

For diffusion model, DiffuSeq consistently out-
performs vanilla Diffusion and other pre-trained
models across multiple evaluation metrics. It
achieves significantly higher word accuracy. Token-
level accuracy follows a similar trend, highlighting
DiffuSeq’s superior ability to predict labels and
individual tokens more accurately. DiffuSeq also
demonstrates a lower Levenshtein Distance, indi-
cating its outputs are closer to the reference texts
and require fewer modifications. Additionally, Dif-
fuSeq achieves a BLEU score, far exceeding vanilla
Diffusion, The overall performance of effectiveness
is comparable to that of the fine-tuned mBART, and
also those of two edit-based NAT models.

Although two types of non-autoregressive mod-
els result in inferior performance on effective-
ness compared to fine-tuned pre-trained models,
they outperform their autoregressive counterparts
trained from scratch through knowledge distillation.
Examples of predicted output generated by each
model are displayed in Table 4 in Appendix.

6.2 Efficiency Discussion

For edit-based NAR models, PointerLevT is signifi-
cantly larger (5.29GB with over 550 million param-
eters) compared to LevT (1.95GB with 170 million
parameters). PointerLevT requires 15.5 hours for
training, whereas LevT takes 13.4 hours. However,
PointerLevT achieves faster inference, completing
the decoding process in 30 seconds, while LevT
takes 42 seconds on the real test dataset. Both
models were trained with a batch size of 16, but
PointerLevT converged in just 10 epochs, whereas
LevT required 12 epochs.

Diffusion models have a relatively small model
size, with DiffuSeq at 363MB (91,225,274 parame-
ters) and vanilla Diffusion at 334MB (87,336,792
parameters). However, conditioning significantly
increases training time. DiffuSeq requires 150
hours to train, compared to just 44 hours for vanilla
Diffusion. A similar trend is observed in inference.
While DiffuSeq achieves the relatively short infer-
ence time per step (24.91s per step for full-text
generation), it requires substantially longer—13.84
hours—to reach an optimal balance between ac-
curacy and speed (see Figure 5). This suggests
that while conditioning improves performance, it
also reduces inference efficiency, which could be a
limiting factor in real-time or resource-constrained
applications where high effectiveness is needed.
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Models | Effectiveness | Efficiency

| Acc Acc_token LevD BLEU | Train Inference

| Al Real All Real All Real All Real |

Autoregressive models
mBART 25 0.68* 0.69° 0.78* 0.82" 7.0" 381" 048" 0.61" | 13.65h 805.25s
mT5arge 0.54 0.43 0.61 0.50 9.63 8.27 0.28 0.34 8.55h 637.53s
KD-mBART 0.11 0.16 0.38 0.55 1473 1136  0.01 0.01 13.75h 23.47s*
Non-autoregressive models

LevT 0.37 0.37 0.52 0.53 12.08 8.22 0.07 0.13 13.4h 4.2s/42.11s
PointerLevT 0.37 0.41 0.52 0.54 11.11 6.26 0.07 0.15 15.5h 3.1s/30.97s
Vanilla Diffusion | 0.14 0.17 0.17 0.20 17.51 1497 0.01 0.01 44h 10.51s/5.84h
DiffuSeq 0.58 0.77 0.67 0.80 11.05 3.53 0.21 0.47 150h 24.91s/13.84h

Table 2: Models’ effectiveness evaluation on all test datasets and real test datasets respectively; efficiency evaluation

on real test datasets

(Token-)Accuracy, BLEU, and Inference Time for Different Steps

—e— BLEU

—8— Accuracy
Token Accuracy

—o— Time

(Token-JAccuracy / BLEU
°
=
Inference Time (h)

12000 21000

Steps

50000

Figure 5: Generated sentences’ accuracy, token-
accuracy and BLEU in difference steps when DiffuSeq
infers

7 Conclusion

This paper investigates two non-autoregressive
(NAR) approaches to address the task of translating
sign glosses into standard text (gloss2text). While
large pretrained models such as mBART and mT5
typically achieve strong performance, our experi-
ments reveal that these NAR models trained with a
smaller size of dataset not only match the accuracy
of fine-tuned large pre-trained language models
but also significantly outperform smaller, distilled
models of comparable capacity. In particular, the
edit-based NAR strategy strikes a notably favorable
balance between accuracy and efficiency, position-
ing it as a viable alternative to resource-intensive
pretrained models. Meanwhile, the conditional
diffusion-based approach attains very high accu-
racy and could benefit from further optimization

to enhance its efficiency, making it well-suited for
future research.

Moreover, the findings suggest that these meth-
ods can be applied to broader text-editing tasks
resembling gloss2text, such as grammatical error
correction and post-editing. This underscores the
potential of novel modeling techniques in both sign
language translation and general NLP applications.

Future work may focus on refining both edit-
based and diffusion-based NAR models to bolster
effectiveness and efficiency across diverse real-
world scenarios.
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A Sinkhorn Layer Formulation

The Sinkhorn layer transforms an input matrix
M € R™ ™ into an approximately doubly stochas-
tic matrix P, where each row and column sums to
1. The transformation is defined as:

P = Sinkhorn(M, 7,T)
where:
* M is the input score or cost matrix,

e 7 is the temperature parameter controlling
sharpness,

¢ T'is the number of Sinkhorn iterations.

Step 1: Initialization (Softmax)

First, apply a softmax-like transformation to ensure

non-negativity:
M
K =exp (>
-

Step 2: Iterative Normalization

Fort = 1,2,...,T, perform the following up-
dates:

K + ——— (Row normalization)
>, Kij

K
2. Kij
Step 3: Final Output

After T iterations, the output is:

K +

(Column normalization)

P=K
which approximates a doubly stochastic matrix.
B DiffuSeq Objective Equations

There are objective functions for DiffuSeq.

Zy = X D Y, fort € [0, T] (9)

q(z7|20)
Lyig =E log —F——=
VLB Q(Zl:T|ZO)[ 0g pO(ZT)
Lt
o a(zi|zo,z) | ge(zo|wHY)
+ Z log ~—~ +log
= Po(zi—1|2¢) po(zol|z1)
Li1 Lo
- logpe(wx@ylm)] (10)
—
['round
T
Hleinﬁsimple = mein [tZQ HZO - f@(ztvt)HQ

+[[EMB(W*™) — fo(21, 1) ||2—1ng9(wx@y|Zo)]

T

— m@in[z lyo — fol(ze, )|

t=2
+ |[EMB(wY) — fo(z1, 1)
+R(|lzol*)] (1)
Estimations were conducted using the Machine-

Learning Impact calculator presented in (Lacoste
et al., 2019).
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Models # Parameters  Batchy,in  Batches  # Epochs/# Steps  GPUgain©~ GPUinference
mBART 25 610,851,840 8 16 7 114 1 A100
mT5arge 1,229,581,312 16 16 9 1 A100 1 A100
KDgmarn 173,207,040 32 16 15 1 L4 1 A100
LevT 172,917,590 16 16 12 1 A100 1 A100
PointerLevT 556,959,062 16 16 10 1 A100 1 A100
Vanilla Diffusion 87,336,792 128 100 600,000 1 A100 1 A100
DiffuSeq 91,225,274 2048 100 50,000 1 A100 1 A100

Table 3: Models’ setups

Case Study 1 - Authentic Sentence

gloss X-IT BE BEYOND DOUBT THAT PROPOSE LEGISLATION BE ATTACK ON DESC-HUMAN
RIGHTS.

reference it is beyond doubt that the proposed legislation is an attack on human rights.

mBART it is beyond doubt that the proposed legislation is an attack on human rights.

mT5 it is beyond doubt that the proposed legislation is an attack on human rights.

KD-mBART it ismena isyonyond theubt thathat theposes legislation beyonttack on humanirrippolicyman rightsights.

LevT it be beyond doubt that propose legislation be attack on desc-human rights.

PointerLevT it be beyond doubt that propose legislation be attack on human rights.

DiffuSeq it is beyond doubt that the proposed legislation is attacks on human rights.

Case Study 2 - Artificial Sentence

gloss Thompson Taylor professor political former U.S. science State Oklahoma Representative Carolyn state

reference Carolyn Thompson Taylor is a former State Representative and professor of political science from the U.S.
state of Oklahoma.

mBART Carolyn Thompson is a former State professor of political science at Oklahoma U.S. Representative State
University.

mT5S Carolyn Taylor Thompson is a former professor of political science at the U.S.

KD-mBART Carol was is of science of.S. statesstiveyn’.

LevT Thompson Taylor professor political former U.S. science State Oklahoma Representative Carolyn state.

PointerLevT Carolyn Thompson Taylor former Representative professor U.S. political science State Oklahoma.

Diffusion-LM | of the loss in a and a further - wide development of the industry.

DiffuSeq thompson is political representative was a science of representative of the professor of u. former. carolyn s

the state of state.

Table 4: Predicted Outputs Generated by Models based on one authentic test data and one artificial test data
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