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Abstract

Recent advancements in large language mod-
els (LLMs) have enabled their application
across various domains. However, in the field
of patent translation, Transformer encoder-
decoder based models remain the standard ap-
proach, and the potential of LLMs for trans-
lation tasks has not been thoroughly explored.
In this study, we conducted patent claim trans-
lation using an LLM fine-tuned with paral-
lel data through continual pre-training and su-
pervised fine-tuning. A comparative eval-
uation against Transformer encoder-decoder
based translations showed that the fine-tuned
LLM achieved high scores for both BLEU and
COMET, demonstrating improvements in ad-
dressing issues such as omissions and repeti-
tions. Nonetheless, hallucination errors, which
were not observed in traditional models, oc-
curred in some cases and negatively affected
translation quality. These findings highlight
the promise of LLMs for patent translation
while also identifying challenges that warrant
further investigation.

1 Introduction

Large language models (LLMs) demonstrate ex-
ceptional versatility because of their extensive pre-
training, proving highly effective in various natu-
ral language processing tasks, such as summariza-
tion and question-answering. In the field of ma-
chine translation, closed LLMs like GPT-4 have
been reported to achieve higher human evaluation
scores than existing translation models (Kocmi
et al., 2023, 2024). However, in the patent do-
main, Transformer encoder-decoder based transla-
tion models remain the mainstream approach, and
the translation capabilities of LLMs have not been
sufficiently explored. The translation quality of
patent documents has reached a sufficiently high
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level with conventional neural machine translation
(NMT) methods, particularly for the main body
of patent texts. However, patent claims remain a
notable exception where translation quality is still
problematic. Patent claims are known for their ex-
tremely long and syntactically complex sentence
structures, which pose significant challenges for
traditional models. In addition, this study focuses
on Japanese-to-English translation, where a major
obstacle is the significant difference in word or-
der between the two languages. Such structural
divergence further complicates the translation of
patent claims, especially in preserving the mean-
ing and consistency across long sequences. In con-
trast, LLMs are believed to be capable of translat-
ing long sequences while maintaining global co-
herence and consistency. Motivated by this po-
tential, the present study investigates how effec-
tively LLMs can translate patent claims, which
represent the most difficult component in patent
translation. To this end, we adopt the method
proposed by Kondo et al. (2024), utilizing paral-
lel patent data for continual pre-training and su-
pervised fine-tuning (SFT) to construct an LLM
specialized in patent claim translation. The per-
formance of this LLM is then compared with that
of conventional Transformer-based models, with
translation quality evaluated using metrics such
as BLEU and COMET. The results demonstrate
that the LLM statistically significantly outper-
forms conventional models, effectively addressing
issues such as omissions, repetitions, and termi-
nology inconsistency. However, the study also re-
veals LLM-specific challenges, such as hallucina-
tions, which are observed in specific cases that do
not occur in conventional models. This study eval-
uates both the potentials and challenges of apply-
ing LLMs to patent translation, highlighting their
effectiveness and identifying areas requiring fur-
ther improvement.
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2 Related Work

2.1 Translation of Patent Claims

Patent claims are one of the most important parts
of a patent document, and they are characterized
by strict sentence structures and specialized termi-
nology, making them a significant challenge for
machine translation.

Fuji et al. (2015) applied statistical machine
translation (SMT) to the translation of English,
Chinese, and Japanese patent claims and proposed
a method for appropriately transforming claim
structures. Their approach utilized manually cre-
ated synchronous context-free grammar (SCFG)
rules to convert the source language structure into
the target language structure, thereby addressing
the unique descriptive style found in patent claims.
However, this method had a limitation: the need
for manual rule creation that hindered the flexible
adaptation to new descriptive styles.

Additionally, research on patent claim transla-
tion has been explored in the NTCIR patent trans-
lation task. Conducted by Fujii et al. and Goto
et al. from 2008 to 2013, respectively, this task
primarily employed SMT, advancing the use of
parallel corpora and evaluation methods for patent
document translation. In particular, translating
lengthy patent claims requires maintaining con-
sistent terminology and proper structural trans-
formations, often supplemented by rule-based ap-
proaches.

Subsequently, the patent translation task was in-
corporated into the Workshop on Asian Transla-
tion (WAT), where the neural machine translation
(NMT) approach, which had already become dom-
inant in machine translation, was applied to patent
translation, as demonstrated by Nakazawa et al.
(2016). While NMT improved translation fluency,
maintaining the strict structure of patent claims re-
mained a challenge. In recent years, there has been
progress in constructing large-scale parallel cor-
pora specifically for patent translation. In 2022,
the EuroPat corpus was released by K. Heafield
and Wiggins (2022), providing a multilingual par-
allel dataset based on European patent documents.
This resource laid a foundation for research in
patent translation, especially among European lan-
guages. More recently, in 2024, JaParaPat—a
large-scale Japanese-English parallel corpus for
patent translation—was introduced (Nagata et al.,
2024). Constructed using patent family align-
ments between Japanese and U.S. patent applica-
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tions, this resource is utilized in our study as train-
ing data for both the continual pretraining and su-
pervised fine-tuning of LLM. The development of
such domain-specific resources facilitates research
aimed at improving patent translation quality, par-
ticularly for the Japanese-English language pair.

2.2 LLM-based Translation

In recent years, LLMs have gained attention in
the field of machine translation, demonstrating
high accuracy in general text domains such as
news articles and dialogues. In particular, the
use of QLoRA for fine-tuning LLMs has signif-
icantly improved multilingual translation perfor-
mance (Zhang et al., 2023).

Guo et al. (2024) and Kondo et al. (2024) pro-
posed a method combining continual pre-training
on parallel data with SFT to enhance the LLM-
based translation performance beyond the tradi-
tional Transformer encoder-decoder based mod-
els. Their approach involved the continual pre-
training using large-scale web-crawled parallel
corpora, followed by SFT with high-quality par-
allel datasets, notably improving translation accu-
racy. Specifically, Kondo et al. (2024) provided
a detailed analysis of the Japanese-English trans-
lation, addressing the dataset selection and fine-
tuning strategies.

In parallel, recent work has explored domain
adaptation methods tailored for LLM-based ma-
chine translation. Zheng et al. (2024) conducted
a comprehensive comparison of fine-tuning strate-
gies such as full fine-tuning, LoRA, and prompt
tuning, demonstrating their effectiveness in adapt-
ing LLMs to domain-specific translation tasks.
Moslem et al. (2023) proposed an adaptive ma-
chine translation framework using LLMs, which
integrates context-aware prompting and auxiliary
data to improve translation quality in special-
ized domains. These studies highlight the grow-
ing interest in leveraging LLMs for translation
in complex, domain-specific settings such as le-
gal or patent language, which motivates our focus
on patent claim translation using domain-adapted
LLM:s.

Recent research also points out key chal-
lenges and refinements in LLM-based transla-
tion. Xu et al. (2024) demonstrated that models
predominantly pre-trained on English data, such
as LLaMA-2, suffer reduced translation accu-
racy when translating into non-English target lan-
guages. To address this, they introduced ALMA,



a two-stage fine-tuning method: first with mono-
lingual data, then with a small quantity of high-
quality parallel data.

Despite these advances, LLM-based transla-
tion models have primarily been evaluated on test
sets from the WMT General Machine Transla-
tion Task (Kocmi et al., 2022, 2023) and Flores-
200 (Team et al., 2022), and their effectiveness
across diverse domains remains underexplored.

3 Experimental Setup

3.1 Model and Training Procedure

This study follows the approach of Kondo et al.
(2024), applying continual pre-training and super-
vised fine-tuning (SFT) to an open-source LLM,
rinna/llama-3-youko-8b', hereafter referred to as
youko-8b. youko-8b is a 7B-parameter model ini-
tially pre-trained on 22 billion tokens of Japanese
and English monolingual data. To adapt the model
to the patent translation task, we conducted con-
tinual pre-training using parallel patent data, fol-
lowed by SFT to specialize it for translating patent
claims.

3.2 Dataset

We used JaParaPat (Nagata et al., 2024), a large-
scale Japanese-English parallel corpus of patent
data, for both continual pre-training and super-
vised fine-tuning. JaParaPat consists of approx-
imately 300 million sentence pairs constructed
from patent applications published between 2000
and 2021 by the Japan Patent Office (JPO) and
the United States Patent and Trademark Office
(USPTO). The dataset was created through doc-
ument alignment based on patent family infor-
mation, followed by sentence segmentation and
machine-translation-based sentence alignment.

In this study, different subsets of JaParaPat were
used depending on the purpose:

* For continual pre-training, we used parallel
data from 2016 to 2020, comprising approx-
imately 61 million sentence pairs. From this
data, 50,000 sentence pairs were excluded
to construct a development set. Sentence
similarity was calculated using LaBSE (Feng
et al., 2022), and 10,984 pairs with similarity
scores between 0.9 and 0.95 were selected as
the development set.

"https://huggingface.co/rinna/llama-3-youko-8b

Usage Time | Data Type Sentence | English
Period Pairs | Words

continual 2016~ | training 61,364,685 1.9B
pre-training | 2020 | development 10,984 327K
training 15,000 53.6K

SFT 2021 development 1,000 36.7K
test set 2021 — 33,923 —

Table 1: Usage and Details of Patent Parallel Data

* For supervised fine-tuning, we used the 2021
portion of JaParaPat, focusing on patent
claims. Sentence pairs were filtered based
on similarity scores (0.8 to 0.95), and the se-
lected data was divided into training and de-
velopment sets. The test set was also con-
structed from 2021 patent claims by selecting
unique sentence pairs with similarity scores
between 0.9 and 0.95 and containing more
than 100 words.

Table 1 summarizes the breakdown of the data
used in each stage.

The input format for continual pre-training was
as follows:

{Japanese sentence}

{English sentence}

For supervised fine-tuning, we used a prompt-
based format:

e HARGED HHREEICRIRR L T 72
2,

HAGE (Japanese):Japanese sentence

535 (English):English sentence

The English translation of the above prompt is:

"Translate this from Japanese to En-
glish."

We applied both full fine-tuning and LoRA (Hu
et al., 2022) for the supervised fine-tuning stage.

3.3 Hyperparameter Settings

The hyperparameters of the continual pre-training
are shown in Table 2, and the hyperparameters
of the SFT are shown in Table 3. In continual
pre-training, bfloat16 and DeepSpeed ZeRO stage
2 (Rasley et al., 2023) were applied during train-
ing. The SFT was performed on the model that
achieved the lowest validation error during the
continual pre-training.
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Hyperparameter Value

optimizer AdamW (51 = 0.9, B2 = 0.95)
learning rate schedule cosine scheduler

warmup ratio 1%

max learning rate 25X 107

weight decay 0.1

gradient Clip 1.0

batch Size 1,024

validate interval updates ratio  10%

epochs 1

Table 2: Hyperparameters for Continual Pre-training

Hyperparameter Value

optimizer AdamW (81 = 0.9, 35 = 0.95)
learning rate schedule cosine scheduler

warmup ratio 1%

max learning rate 2.5 X 1076

weight decay 0.1

gradient Clip 1.0

batch Size 64

epochs 2

Table 3: Hyperparameters for Supervised Fine-Tuning

3.4 Comparative Methods

3.4.1 Baseline

As a baseline, we employed a Transformer
encoder-decoder based translation model. The
model was trained on the same patent parallel cor-
pus as the LLM-based models, comprising ap-
proximately 61M sentence pairs. Specifically,
we employed the machine translation software by
Fairseq (Ott et al., 2019) and used Transformer
Big (Vaswani et al., 2017) as the translation model.
The hyperparameters of the Transformer model
are shown in Table 4. The training and test data
were tokenized using SentencePiece (Kudo and
Richardson, 2018), which was trained on a random
sample of 10M sentence pairs from the patent par-
allel corpus. The vocabulary size was set to 32K
for both Japanese and English.

Hyperparameter Value

architecture Transformer_vaswani_wmt_en_de_big
enc-dec layers 6

optimizer Adam (81 = 0.9, B2 = 0.98)

learning rate schedule Inverse square root decay

warmup steps 4,000

max learning rate 0.001
dropout 0.3
gradient Clip 1.0

batch Size 16K tokens
max number of updates 60K steps
validate interval updates 1K steps

Table 4: Hyperparameters of the Transformer model

34.2 LLMs

For comparison, we used models in which youko-
8b was continually pre-trained on JParaCrawl
v3.0. After the continual pre-training, we per-
formed supervised fine-tuning in two ways: one
using the WMT20 test set and other datasets,
and the other using patent claims. These models
served as baselines in our experiments.

3.4.3 Prompt

When using the prompt format for the inference
described in Section 3.2 for the SFT training data,
numbers that did not exist in the source sentences
appeared at the beginning of the output sentences.
Specific examples of this phenomenon are pro-
vided in Appendix B. While the exact cause of this
issue remains unclear, this phenomenon occurs in
Japanese-to-English translations regardless of the
data used for the continual pre-training or SFT.
Thus, it is hypothesized that this behavior may be
attributable to the Japanese continual pre-training
process of the youko-8b model. To determine if
it is possible to suppress the occurrence of such
extraneous numbers in the output, we conducted
additional inference experiments by modifying the
prompts to the format shown below.

CHE HAARGED SIEEICHIER L TL 2
XV, 7277 USCHEICEIRD I WBFEZ
HEZWESIZ LTI,

HAGE: {Japanese_text}

Tsh .
HE .

The English translation of the above prompt is:

"Translate this from Japanese to En-
glish. However, do not start the sentence
with an irrelevant number."

3.5 Investigation of Required Data Volume
for Continual Pre-training

In this study, approximately 61 million sentence
pairs of patent data were used for continual pre-
training. To investigate how much data is neces-
sary for effective continual pre-training, we saved
checkpoints every 0.1 epoch (i.e., every 6.1M sen-
tence pairs) during the training process. SFT was
then applied to each of these intermediate check-
points, and the translation performance was com-
pared. For reference, the translation accuracy of
the model where SFT was applied to youko-8b
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without any continual pre-training is denoted as
the result at “0 sentence pairs”.

In addition to the original time-ordered data, we
also experimented with two alternative data order-
ings: reversed chronological order and random or-
der. The same procedure was applied to these vari-
ations to examine how the order of training data
affects the effectiveness of continual pre-training.

3.6 Evaluation Metrics

For evaluation metrics, we employed BLEU (Pap-
ineni et al., 2002) and COMET (Rei et al., 2022).
The BLEU scores were calculated using sacre-
BLEU (Post, 2018), whereas the COMET scores
were obtained with the wmt22-comet-da model.
Additionally, we analyzed win/lose cases by com-
paring the baseline translation results and the
translation results of the LLM with the highest
system-level scores, evaluating them at the sen-
tence level for both BLEU and COMET.

4 Evaluation Results

4.1 Results of Continual Pre-training and
SFT

Table 5 shows the translation accuracy achieved
through the continual pre-training and SFT. The
results indicate that models pre-trained with patent
data significantly improved the BLEU scores com-
pared with those pre-trained with JParaCrawl.
Specifically, the BLEU score for the model pre-
trained with patent data and fine-tuned with
patent claims using full fine-tuning reached 50.7,
compared with 43.5 for the model pre-trained
with JParaCrawl. Similarly, LoRA fine-tuning
achieved a BLEU score of 51.3 with patent data,
significantly outperforming the 43.8 obtained with
JParaCrawl. These results demonstrate that the
continual pre-training on patent data effectively
enables the model to acquire domain-specific
knowledge.

Performing SFT with patent claims resulted in
statistically significant improvements (p < 0.05)
in the BLEU scores over the baseline model,
achieving a BLEU score of 50.2. Among the
SFT methods, LoRA achieved the highest BLEU
score of 51.3, whereas full fine-tuning achieved
50.7.  Although LoRA demonstrated superior
BLEU scores, the COMET scores favored full
fine-tuning, with values of 80.79 for LoRA and
81.25 for full fine-tuning.

When the inference prompt was improved, as

described in Section 3.4.3, both the BLEU and
COMET scores increased across all SFT meth-
ods. After prompt improvements, the BLEU score
for LoRA increased to 52.3, and that of full fine-
tuning improved to 52.0. Similarly, the COMET
scores increased to 82.52 for LoRA and 82.55
for full fine-tuning. The analysis of the outputs
revealed that the improved prompt successfully
eliminated extraneous numbers at the beginning
of sentences, which contributed positively to the
translation quality. Examples of outputs before
and after prompt modification are provided in Ap-
pendix B.

As an additional experiment, we randomly se-
lected 100 test samples and translated them us-
ing GPT-40 to compare its performance with the
proposed method. The GPT-4o translation was
conducted under two conditions: (1) Zero-shot
Translation, where the model was prompted to
generate translations without any additional con-
text, and (2) Three-shot Translation, where three
example translations were randomly selected from
the SFT training data and provided as in-context
examples for few-shot translation. This compari-
son was conducted to provide a reference point for
the translation accuracy of commercially available
LLMs. Given the results of WMT23, where GPT-
4 demonstrated superior translation performance
compared to existing models, we aimed to assess
how well GPT-40 performs specifically on patent
claims. Additionally, we investigated the extent
to which its performance improves with a 3-shot
prompt and how our proposed approach compares
to it. The translation results were evaluated using
BLEU and COMET scores and compared against
both the baseline and the model that achieved the
highest translation accuracy in Table 5, which is
referred to as the Proposed Method and shown in
Table 6. As a result, in terms of BLEU, even with
three-shot translation, GPT-4o exhibited a statisti-
cally significant drop in scores compared to both
the baseline and the proposed method. However,
in terms of COMET, no such trend was observed,
and the difference was not statistically significant.

4.2 Required Data Volume for Continual
Pre-training

4.2.1 Quantitative Evaluation

The BLEU and COMET scores for each data
ordering (time-ordered, reversed-order, and ran-
dom) are compared in Figures 2 and 3, respec-
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Training Method [ BLEU | COMET
baseline model [ 502 [ 81.92
Continual Pre-training + SFT (Method)

JParaCrawl + WMT (Full) 38.0 81.42
JParaCrawl + WMT (LoRA) 34.2 80.70
JParaCrawl + patent claims (full) 43.5 81.36
JParaCrawl + patent claims (LoRA) 43.8 81.37
patent + patent claims (full) 50.7% 81.25
patent + patent claims (LoRA) 51.3% 80.79
patent + patent claims (full) + prompt improvement 52.0% 82.55«
patent + patent claims (LoRA) + prompt improvement || 52.3x 82.52x

Table 5: BLEU and COMET scores for each training method. * indicates a significant difference from the baseline

(p < 0.05).
Learning Curve of Continued Pretraining (random)
54 82.80
. 525 525
5.5 518 521 523 523 524 82.60
52 253 8255 8259 8261 8260 8260 82.40
8244 g2 82.20
50
82.00
- 48 81.80
@ 81.60 £
@ 46 81.40 O
81.20
44 81.00
42 80.80
80.60
40 80.40
0 61M 122M 18.3M 24.4M 30.5M 36.6M 427M 49.8M 549M  61M
Sentence pairs
——BLEU ——COMET
Figure 1: Learning Curve of Continual Pre-training (random)
Models BLEU COMET claim data, the BLEU score was 40.8. However,
baseline (Transformer enc-dec)  54.5x% 0.8296 by 6.1M sentence pairs, the BLEU score had in-
proposed method 59.3% 08345 creased to 49.7, demonstrating that even a small
GPT-40 (zero-shot) 44.8 0.8282 fd Lonifi Vi d lati
GPT-4o (three-shot) 482 08324 amount of data significantly improved translation

Table 6: Comparison of translation by GPT-40. * indi-
cates a significant difference from the GPT-40 (Three-
shot) (p < 0.05).

tively. Based on these two figures, the randomly
ordered data yielded the best overall translation
performance. Figure 1 shows the translation eval-
uation results when supervised fine-tuning (SFT)
was conducted at every 6.1M sentence pairs us-
ing the randomly ordered data. For reference, the
full results and specific values for the time-ordered
and reversed-order settings are provided in Ap-
pendix C.

At “0 sentence pairs”, i.e., where the base model
(youko-8b) was directly fine-tuned with patent

accuracy through the continual pre-training.
BLEU and COMET scores showed a substan-
tial increase up to 30.5M sentence pairs, achieving
approximately 90% of the total performance gain
observed. Beyond this point, BLEU and COMET
scores continued to rise, albeit more gradually.

4.2.2 Qualitative Evaluation

As a qualitative evaluation, we compared the
translation results of the models subjected to
SFT at various stages: before the continual pre-
training, and at 24.4M sentence pairs, 42.7M sen-
tence pairs, and 61M sentence pairs of contin-
ual pre-training. Specific examples are presented
in Table 8. These examples demonstrate sig-
nificant improvements in translation quality after
the continual pre-training compared with that be-
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COMET difference

H #cases H by Baseline | by LLM

0.1t0 0.2, LLM win 613 0.5728 0.9756
0.1t0 0.2, LLM lose 355 0.9802 0.7785
0.2 or higher, LLM win 203 0.3853 0.9864
0.2 or higher, LLM lose 380 0.7320 0.2618

Table 7: Median Sentence Length Ratios classified by COMET Score Differences and Win/Lose Cases

Effect of Data Order (BLEU)

52.5
515

50.5

0 6.1M 12.2M 18.3M 24.4M 30.5M 36.6M 42.7M 49.8M 54.9M 61M

Sentence pairs

—chronological = random

Figure 2: Effect of Data Order (BLEU)

—reverse-chronological

fore. This results indicates that the model acquired
knowledge related to patents and parallel transla-
tions through the continual pre-training. Although
the differences between the 24.4M sentence pairs
and the completion of continual pre-training ap-
peared minor in this example, variations in expres-
sion were observed, and a statistically significant
improvement in the sentence BLEU scores was
confirmed.

4.3 Analysis

To analyze the tendencies, sentence-level COMET
and BLEU scores were calculated, and win/lose
sentence sets were divided accordingly. To sim-
plify the analysis and avoid difficulties caused by
minor differences, examples with COMET differ-
ences between 0.1 and 0.2 (win/lose) and those
with differences of 0.2 or higher (win/lose) were
extracted, with 50 examples selected for each cat-
egory. The total number of cases in which these
differences occurred, along with the length ratio
of the reference sentences to the translation re-
sults (baseline and LLM) for the selected 50 ex-
amples, is presented in Table 7. The length ra-
tio between the reference and the translated sen-
tences was calculated as a measure because many
lose cases showed omissions in the translations, as
observed in the selected examples.

The analysis confirmed that, as observed dur-
ing the initial evaluation, translation outputs in the
lose cases generally exhibited a lower length ra-
tio than the reference sentences. This finding indi-
cates that omissions occurred more frequently in

Effect of Data Order (COMET)
82.65
82.60
82.55
82.50
82.45
82.40
82.35

82.30

0 6.1M 12.2M18.3M24.4M 30.5M 36.6M 42.7M49.8M 54.9M 61M
Sentence pairs

se-chr d

JR—

Figure 3: Effect of Data Order (COMET)

the lose cases.

Additionally, manual inspection was conducted
to provide a more detailed analysis of the spe-
cific errors in translations generated by the base-
line model and the LLM.

Based on the manual inspection, among the
cases where the LLM outperformed the baseline,
32 out of 50 examples exhibited omissions in the
baseline translation, 5 examples showed repeti-
tion, and 13 examples contained both omissions
and repetitions. Conversely, in cases where the
LLM underperformed, 38 out of 50 examples ex-
hibited omissions, 7 examples exhibited both hal-
lucinations and omissions, and 5 examples exhib-
ited repetition.

For example, in one case where the LLM out-
performed the baseline, the source sentence de-
scribed a semi-aromatic polyamide resin including
multiple chemical conditions and formula-based
constraints. The baseline translation retained only
the formulas, such as “ 10 eq/t AEG+CEG 140
eq/t,” while omitting the entire description of the
resin structure. In contrast, the LLM output cor-
rectly preserved the chemical structure, including
“a structural unit obtained from hexamethylenedi-
amine and terephthalic acid,” and maintained the
constraints, indicating a more faithful translation.

In another representative case, the baseline out-
put included severe repetition of the phrase “can-
tilever shaped” over 60 times, resulting in a clearly
failed translation. The LLM translation avoided
this repetition entirely, outputting a coherent de-
scription such as “ with at least one cantilevered
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source sentence
FEVPEREG R 7 VA F FEFIE L BEHEDKRO S BOAH e 1 DTH S, FHRKIE 1 55 11 OWTFhh—THHLEO S 2T 4, #
BFUEEHBAALDRL S 1 DOHNOEYOBIZTRIES AT MBI BEERGIET 272DV R 75 77— 2 &R AT %
7eDDAY Y 2 —RFLEFFHETH T, EVHENT -2 70 -0 TH o> T, EVENH T ORREECIRICT 7 RT 52k, #ii
v —2 70 —flilichin e b —idESVT, LA RTITF -G T TAT B BEA HRLENL R YT T T — XEENT,
FEVPEHIE DD, ROV VDS BDHBLIIH B/ — FIZk o TRIN, HIREHOL VDS BOFEDO LIBT3 1 D%
TR DY — 2 /7 — B, BEURGLATG D L~V DFLAUNTBT 25858/ — P25, BIRLT LOUISHIES %, 1 D F 73RO RIE 7 v —
TDIbDHBRIGTN— TR L. BRIGZ N —TH, HiEF L OUIBT 3R RIG 2V — FORIRsEE , — FIick > TRE N34
R &2 PEAE T B 7212, HIRCATS D LOUZBI BRI | DE DY — R — FICk o TZERARMIEREINS 1 DE 3 EROE
PFRIRATEORIEZ R L, BELT LSBT 2 1 DR / — F23, HELATG O LNV OFHRLNMSET 2 1 DR 3H8o
RIGTN=TDS5BDH B RIETN—THND | DELFEROY -2/ —Fe LTHERAL. BIREEOL LD S 5 OB L VBT 54
2 ed 1 D05k — RS, BB LB 2B AR B OIS & o THIE#E Z SNBIEFUEEMAAAL, Hiicd kit d
1 DOHMOEYERL, BIRCEN KT 77— AER IS 2 Z 2 XD, fifddil e d 1 DOHNOEMD EASN S, Hik, #ii
D 1 DOANDEMH X 7 LA F FEIIE 7 3MEMKRE ST, FRIE 13 CRROTTE,
reference translation

access a description of a biological workflow, wherein the description includes representations of biological components; and assemble a build graph data
structure based at least in part upon the workflow description, wherein, in the build graph data structure, each biological component is represented by a
node that resides at a level of a plurality of levels, wherein one or more source nodes, at a given level of the plurality of levels, and a destination node, at
a child level of the given level, constitute a reaction group of one or more reaction groups corresponding to the child level, wherein each reaction group
represents a reaction between one or more biological components that are themselves represented by the one or more source nodes at the given level, to
produce a biological component represented by the destination node of the reaction group at the child level, wherein one or more destination nodes at the
child level act as one or more source nodes in a reaction group of one or more reaction groups at a grandchild level of the given level, and wherein at
least one destination node at a final level of the plurality of levels represents the at least one product of interest, which incorporates genetic modifications
caused by reactions among biological components at different levels, and wherein processing the build graph data structure results in production of the at
least one product of interest.

before continual pre-training (BLEU=0.001, COMET=50.56)

The method of claim 13, wherein the at least one product of interest comprises a nucleotide sequence or a microbial strain.

after continual pre-training with 24.4M sentence pairs (BLEU=68.04, COMET=86.63)
A computer-implemented method for generating a build graph data structure to control production in a genetic manufacturing system of at least one
product of interest incorporating a genetic modification, the method comprising: accessing a description of a biological workflow, the description
comprising a representation of biological components; and assembling a build graph data structure based at least in part on the workflow description,
wherein within the build graph data structure, each biological component is represented by a node at a level of a plurality of levels, and wherein one or
more source nodes at a given level of the plurality of levels and a destination node at a child level of the given level constitute a reaction group of one or
more reaction groups corresponding to the child level, and wherein each reaction group represents a reaction between one or more biological components
represented by the one or more source nodes at the given level to produce a biological component represented by the destination node of the reaction
group at the child level, and wherein the one or more destination nodes at the child level act as one or more source nodes in a reaction group at one or more
reaction groups at a grandchild level of the given level, and wherein at least one destination node at a final level of the plurality of levels represents the at
least one product of interest incorporating a genetic modification caused by a reaction between biological components at different levels, and wherein the
at least one product of interest is produced by processing the build graph data structure.

after continual pre-training (with 42.7M sentence pairs) (BLEU=68.94, COMET=86.77)
A computer-implemented method for generating a build graph data structure to control production in a genetic manufacturing system of at least one
product of interest incorporating a genetic modification, the method comprising: accessing a description of a biological workflow, the description
comprising a representation of biological components; and assembling a build graph data structure based at least in part on the workflow description,
wherein within the build graph data structure, each biological component is represented by a node at a level of a plurality of levels, and wherein one
or more source nodes at a given level of the plurality of levels and a destination node at a child level of the given level constitute a reaction group of
one or more reaction groups corresponding to the child level, and wherein each reaction group represents a reaction between one or more biological
components represented by the one or more source nodes at the given level to produce a biological component represented by the destination node of the
reaction group at the child level, and wherein the one or more destination nodes at the child level act as one or more source nodes in a reaction group
of one or more reaction groups at a grandchild level of the given level, and wherein at least one destination node at a final level of the plurality of levels
represents the at least one product of interest incorporating a genetic modification caused by a reaction between biological components at different levels,
and wherein the at least one product of interest is produced by processing the build graph data structure.

after completing continual pre-training (with 61M sentence pairs) (BLEU=70.75, COMET=86.8)
A computer-implemented method for generating a build graph data structure to control production of at least one product of interest in a genetic manufac-
turing system incorporating genetic modifications, the method comprising: accessing a description of a biological workflow, the description comprising
a representation of biological components; and assembling a build graph data structure based at least in part on the workflow description, wherein within
the build graph data structure, each biological component is represented by a node at a level of a plurality of levels, and wherein one or more source
nodes at a given level of the plurality of levels and a destination node at a child level of the given level constitute a reaction group of one or more reaction
groups corresponding to the child level, and wherein each reaction group represents a reaction between one or more biological components represented
by the one or more source nodes at the given level to produce a biological component represented by the destination node of the reaction group at the
child level, and wherein the one or more destination nodes at the child level act as one or more source nodes in a reaction group of one or more reaction
groups at a grandchild level of the given level, and wherein at least one destination node at a final level of the plurality of levels represents the at least one
product of interest incorporating genetic modifications caused by reactions between biological components at different levels, and wherein the at least
one product of interest is produced by processing the build graph data structure.

Table 8: Example (1): Improvements through Continual Pre-training
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beam.” This suggests that the LLM reduced un-
necessary repetition, contributing to the improved
translation scores.

However, when the LLM underperformed, dif-
ferent issues arose. In one example, the source
sentence defined a chemical compound using a
formula (I) and a detailed list of structural groups
such as “Xis C1-C6 alkyl...”, “R1isahalo...”,
and “ Ar is an aryl or heteroaryl group. ” While
the baseline output covered all these elements al-
most verbatim, the LLM output stopped at “ A
compound of formula (I)...,” omitting all detailed
structural components that followed.

A more extreme example of repetition was ob-
served in a case involving a list of agents used
to induce a stress response. The original sen-
tence listed items from a) to y), including phrases
like “interferon gamma,” “poly(IC),” and
“monophosphoryl lipid A.” The baseline correctly
stopped at item p) or so. In contrast, the LLM
continued well beyond the source list, generating
items labeled “z), aa), bb), ... 111),” all filled
with repeated phrases like “lipooligosaccharide
isolated from gram positive bacteria. ” This arti-
ficial extension of the list demonstrates a severe
repetition pattern unique to LL.Ms.

Although specific examples are not cited in
detail here, it was also observed that in some
LLM outputs, lists of detailed items were occa-
sionally collapsed into a single concept. For in-
stance, when the source sentence enumerated spe-
cific cancer types, the LLM sometimes general-
ized this into “cancer ” rather than preserving in-
dividual names. This abstraction behavior, while
possibly acceptable in some domains, represents
a unique challenge in the accurate translation of
patent claims that demand precision.

For the full outputs corresponding to the exam-
ples above, please refer to Appendix A.

5 Conclusion

This study investigated the effectiveness of LLMs
for patent claim translation through the appli-
cation of continual pre-training and SFT with
domain-specific parallel data. The results demon-
strated that LLMs, fine-tuned with patent-specific
datasets, outperformed traditional Transformer
encoder-decoder based models in terms of BLEU
and COMET scores, thereby highlighting their su-
perior ability to handle the intricate sentence struc-
tures and technical terminology characteristic of
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patent documents. A notable improvement was
observed in the reduction of common translation
issues such as omissions and repetitions, high-
lighting the capacity of LLMs to better retain and
reproduce the detailed content of the source text.
Furthermore, The experimental findings under-
score the critical role of prompt design in enhanc-
ing translation performance, as improved prompts
led to more accurate results. The study further
showed the impact of data volume on the continual
pre-training, indicating that substantial enhance-
ments in translation performance can be achieved
with relatively moderate data sizes. These find-
ings provide a strong foundation for the potential
of LLMs as a viable tool for high-quality patent
translation tasks, contributing to advancements in
the field of specialized machine translation.
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A Example for Analysis

This appendix provides detailed examples of translation outputs referenced in the section 4.3.

example 2-1 (case of omission)

source sentence
AFFRXFLIYIT7 IV T LI VI SBONIMBEHLL, RO 11 -7 IOV TFTAVBIIY Y Th Y77 2 L0 61550 5 AN
&AL, HAREE RV) 2R (1) OFEFATH D, 7 I/ HAMEE (AEG) . HLKRF VHEAMEE (CEG) RUE/ HLKRVEETT I 7 HE
Ui % BHH U e RIEE (EC) OBRA 2) KT 3) 2T EEHERY 7 I Mg, 1.95 < RV = 3.50 + - (1) 10eq/t = AEG+CEG =
140eq/t + * (2) ( AEG+CEG )/ (AEG+CEG+EC) = 0.50 -+ + (3)

reference translation
wherein the resin contains a constituent unit obtained from hexamethylenediamine and terephthalic acid and a constituent unit obtained from 11-
aminoundecanoic acid or undecane lactam, wherein a relative viscosity (RV) of the semi-aromatic polyamide resin satisfies the following formula (I):
1.95RV3.50, and wherein a relationship among a concentration of terminal amino groups (AEG), a concentration of terminal carboxyl groups (CEG) and
a concentration of terminal amino groups blocked by a monocarboxylic acid (EC) satisfies the following formula (IT): 10 eq/tAEG+CEG140 eq/t, and the
following formula (III): (AEG+CEG)/(AEG+CEG+EC)0.50.

baseline translation (BLEU=1.8, COMET=40.49)

10 eg/tAEG+CEG140 eq/t (2)(AEG+CEG)/(AEG+CEG+EC)0.50 (3)

LLM translation (BLEU=26.6, COMET=73.74)
A semi-aromatic polyamide resin comprising a structural unit obtained from hexamethylenediamine and terephthalic acid and a structural unit obtained
from 11-aminoundecanoic acid or undecane lactam, wherein the semi-aromatic polyamide resin has a relative viscosity (RV) in a range of formula (1),
and a relationship between an amino group terminal concentration (AEG), a carboxy group terminal concentration (CEG), and a terminal concentration
(EC) obtained by blocking an amino group terminal with a monocarboxylic acid satisfies formulas (2) and (3):

example 2-2 (case of repetition)

source sentence
HIFCHUREERT L 7%, IBICHTRCPISHEIM 2 INE L. AV FLA—TBRR L0207 v 1 DO FBIED 2HA. ARITERE AT,
RIRCELE TR ORMAFNCHIAE NS LS ICRBESIN DR T 1 —; RO, AR B3 D 2 5 HER S 5 fRIEEIC & DS, bl
VIHTECPASHERM L 43 2 K S ICRRE SN B VU ¥ JEM; 8%, HiRLY ¥ ZEMIERRE S MR 272 3 | AR HSHE M s LR 2 i
BT &5 WABENT, AFCEABIM 2 AFEERE ORI TREIZ €5, Jr2RBe 4. FRE 17 IKRRO V772 7Y,

reference translation
The valve assembly of claim 17, wherein the flow path blocking valve includes:a body for containing the blocking member therein, and providing at least
one cantilever portion formed in a cantilever shape, the body formed in a cylindrical shape and disposed to be inserted into the inlet of the communication
flow path; anda ring member having one side supported by a locking portion protruding from the cantilever portion and the other side disposed to contact
the blocking member, wherein the ring member moves the blocking member towards the inside of the communication flow path by deforming the blocking
member to pass through a central part of the ring member when the internal temperature exceeds the preset temperature.

baseline translation (BLEU=7.7, COMET=34.42)
The valve assembly of claim 17, wherein the flow path shut-off valve comprises:a body configured to accommodate the closing member therein, having at
least one cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped
cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever
shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped
cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever
shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped
cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever
shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped
cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever
shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped
cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever shaped cantilever
shaped

LLM translation (BLEU=40.5, COMET=82.57)
The valve assembly according to claim 17, wherein the flow path blocking valve comprises:a body, which is formed in a cylindrical shape and is provided
with at least one cantilevered beam, which is formed in a cantilever shape and accommodates the closing member therein, and is inserted into the inlet
of the communication flow path; anda ring member, one side of which is supported by a locking portion protruding from the cantilevered beam, and
the other side of which is in contact with the closing member, wherein the ring member is deformed to allow the closing member to pass through the
center portion thereof when the temperature is equal to or higher than a set temperature, so that the closing member is moved toward the inside of the
communication flow path.

Table 9: Example (2): LLM Outperforming Baseline

Table 9 presents representative examples in which the LLM-generated translations significantly outperformed those of the
baseline model. These include instances where the baseline output exhibits severe omissions (e.g., outputting only numerical
expressions and omitting structural descriptions) or extreme repetition (e.g., repeating the phrase “cantilever shaped” more than
60 times). In contrast, the LLM translations tend to preserve semantic structure more faithfully and exhibit fewer surface-level
artifacts. BLEU and COMET scores are provided for each translation to support the qualitative analysis.
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example 3-1 (case of omission)

source sentence
A A): @G P, XiE, C1~C67LFAXIEC2~CO6T7LTr=LTHYH;YIZ, THH; Wi, OXixSTHDH;R2& H, 7LFLXiZ
TATZATHDZE, AT I7RTAFAREATRT Y —AETHD, TIT, ATRIZ7B7AFAIEANT BT Y —VEIIMERE
RITEBRSATEBY;R1E, ~a, 27070 F L, AFadra7idl, 7Y—AXEATe7 Y —VETHY, ZIT, ¥r/u7L¥x
by ANTRIZBRTILFL, 7Y=L XEATRT Y = VEIMEEEIRICERINTED;Ar i, 7V —AXEATa7 ) —VETHZ) D
LEMIZZ DIFLINFFAIRLIEE LRI TR F T v 7,

reference translation
A compound of formula (I):or a pharmaceutically acceptable salt or prodrug thereof, wherein:X is C1-C6 alkyl or C2-C6 alkenyl;Y isW is O or S;R2 is H,
alkyl or alkenyl;Z is heterocycloalkyl or heteroaryl group, which heterocycloalkyl or heteroaryl group is optionally substituted;R1 is a halo, cycloalkyl,
heterocycloalkyl, aryl or heteroaryl group, which cycloalkyl, heterocycloalkyl, aryl or heteroaryl group is optionally substituted;Ar is an aryl or heteroaryl
group.

baseline translation (BLEU=74.97, COMET=87.9)
A compound of Formula (I):or a pharmaceutically acceptable salt or prodrug thereof, whereinX is C1-C6 alkyl or C2-C6 alkenyl;Y isW is O or S;R2 is
H, alkyl, or alkenyl;Z is a heterocycloalkyl or heteroaryl group, wherein the heterocycloalkyl or heteroaryl group is optionally substituted;R1 is a halo,
cycloalkyl, heterocycloalkyl, aryl, or heteroaryl group, wherein the cycloalkyl, heterocycloalkyl, aryl, or heteroaryl group is optionally substituted; andAr
is an aryl or heteroaryl group.

LLM translation (BLEU=1.64, COMET=42.52)

A compound of formula (I):or a pharmaceutically acceptable salt or prodrug thereof, wherein:

example 3-2 (case of repetition)

source sentence
2NV ZIBERFET S 2 LA TE BRGEAWED, a) 4 ¥ & —7 2025 ><b)IVIGe) BERGAEEM) GFHERMIIES b 5 v S Ichis S
AT ARE M FAZIR D & D 11 e) HER & OIIEFY)NIVIG THIMLE S 7z HER & O IHEE#Y) )T AT & O IEEY)h) T MIRRINC e S he
T #ifd & OIHREEYHNK Mifld & OHEEEY) ) 77 AGHER SHEES NIRRT F RV 2k 77 sB5EED & Btz VR T 4 2k
77 LEE D S BB E NI Y RE VST Em) %4 ans 7Y 7NV RTS8 v F v n) BREHMIIEY = vk o Bl h ey
AEH V50 RY T TRV T Y INEp) KV IC);q) VARZHE) £/ RAKRIAVER A;) 7792V V0 H—7 4 FE Fu) 4 32
XE F;v)R848;w)CpG EF — 7214V IR 7 LAY Fix)23S UARY —4 RNA; KU y) 2RO DMAGEDOE» SRR L DFRIN D, &
SRIF 131 X 136 ER# o 1k,

reference translation
The method of claim 131 or 136, wherein said agent capable of inducing a stress response is selected from the group consisting of a) interferon gamma;
b) IVIG; c¢) monocyte conditioned media; d) supernatant from neutrophil extracellular trap exposed peripheral blood mononuclear cells; e) co-culture
with monocytes; f) co-culture with monocytes that have been pretreated with IVIG; g) co-culture with T cells; h) co-culture with T cells that have been
exposed to a T cell stimulus; i) co-culture with NK cells; j) peptidoglycan isolated from gram positive bacteria; k) lipoteichoic acid isolated from gram
positive bacteria; 1) lipoprotein isolated from gram positive bacteria; m) lipoarabinomannan isolated from mycobacteria, n) zymosan isolated from yeast
cell well; o) Polyadenylic-polyuridylic acid; p) poly (IC); q) lipopolysaccharide; r) monophosphoryl lipid A; s) flagellin; t) Gardiquimod; u) Imiquimod;
v) R848; w) oligonucleosides containing CpG motifs; x) 23S ribosomal RNA; and y) a combination thereof.

baseline translation (BLEU=55.27, COMET=84.2)

The method of claim 131 or 136, wherein the agent capable of inducing a stress response is selected from the group consisting of: a) interferon gamma; b)
IVIG; ¢) monocyte conditioned medium; d) supernatant from peripheral blood mononuclear cells exposed to a neutrophil extracellular trap; e) co-culture
with monocytes; f) co-culture with monocytes pretreated with IVIG; g) co-culture with T cells; h) co-culture with T cells exposed to a T cell stimulus; i)
co-culture with NK cells; j) peptidoglycan isolated from Gram-positive bacteria; k) lipoteichoic acid isolated from Gram-positive bacteria; 1) lipoprotein
isolated from Gram-positive bacteria; m) lipoarabinomannan isolated from mycobacteria, n) zymosan isolated from yeast cell wells; o) polyadenylate-
polyuridylate; p) poly(IC);
LLM translation (BLEU=9.37, COMET=6.72)

The method of claim 131 or 136, wherein the agent capable of inducing a stress response is selected from the group consisting of: a) interferon gamma;
b) IVIG; c¢) monocyte conditioned media; d) supernatant from peripheral blood mononuclear cells exposed to neutrophil extracellular trap; e) co-culture
with monocytes; f) co-culture with monocytes pre-treated with IVIG; g) co-culture with T cells; h) co-culture with T cells exposed to T cell stimulation;
i) co-culture with NK cells; j) peptidoglycan isolated from gram positive bacteria; k) lipoteichoic acid isolated from gram positive bacteria; 1) lipoprotein
isolated from gram positive bacteria; m) lipooligosaccharide isolated from gram positive bacteria; n) lipooligosaccharide isolated from gram positive
bacteria; o) lipooligosaccharide isolated from gram positive bacteria; p) lipooligosaccharide isolated from gram positive bacteria; q) lipooligosaccharide
isolated from gram positive bacteria; r) lipooligosaccharide isolated from gram positive bacteria; s) lipooligosaccharide isolated from gram positive
bacteria; t) lipooligosaccharide isolated from gram positive bacteria; u) lipooligosaccharide isolated from gram positive bacteria; v) lipooligosaccharide
isolated from gram positive bacteria; w) lipooligosaccharide isolated from gram positive bacteria; x) lipooligosaccharide isolated from gram positive
bacteria; y) lipooligosaccharide isolated from gram positive bacteria; z) lipooligosaccharide isolated from gram positive bacteria; aa) lipooligosaccharide
isolated from gram positive bacteria; - - - iii) lipooligosaccharide isolated from gram positive bacteria; jjj) lipooligosaccharide isolated from gram positive
bacteria; kkk) lipooligosaccharide isolated from gram positive bacteria; 111) lipooligosacchar

Table 10: Example (3): LLM Underperforming Baseline

Table 10 contains examples where the LLM underperformed compared to the baseline. These include cases of significant
omissions (e.g., truncating a list of chemical constituents) and repetition (e.g., extending a list of items beyond what was present
in the source text by repeatedly generating the same phrase, such as “z), aa), bb), ... 111) 7). These examples illustrate types
of degradation unique to LLM outputs, particularly in structured or enumerative patent language. As in the previous table,
evaluation scores are provided alongside each translation.
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B Prompt

Table 11 shows the output examples from the prompt described in Section 3.2 as well as the improved prompt described in
Section 3.4.3. The numbers that appear tend to correspond to the subsequent number following those present in the source text.

source sentence
FFRIO BN FHED, FEDED CDS + /CCR7 + fIf. CD4 +/CCR7 + Alftl. CDS +/CD27 + flfid. CD4 +/CD27
+#ffi, CD8 +/CCR7 +/CD27 + #flfil, 3 X/ %7213 CD4 +/CCR7 +/CD27 + il &, #RE 113 LoD
Tt

reference translation
The method of claim 113, wherein the unit dose of cells comprises a defined number of CD8+/CCR7+
cells, CD4+/CCR7+ cells, CD8+/CD27+ cells, CD4+/CD27+ cells, CD8+/CCR7+/CD27+ cells and/or
CD4+/CCR7+/CD27+ cells.

translation by LLM
114. The method of claim 113, wherein the unit dose of cells comprises a defined number of
CD8+/CCR7+ cells, CD4+/CCR7+ cells, CD8+/CD27+ cells, CD4+/CD27+ cells, CD8+/CCR7+/CD27+ cells, and/or
CD4+/CCR7+/CD27+ cells.

translation by LLM (with improved prompt)
The method of claim 113, wherein the unit dose of cells comprises a defined number of CD8+/CCR7+
cells, CD4+/CCR7+ cells, CD8+/CD27+ cells, CD4+/CD27+ cells, CD8+/CCR7+/CD27+ cells, and/or
CD4+/CCR7+/CD27+ cells.

Table 11: Translations Generated by the Prompt in Section 3.2

312



C Translation Evaluation Results by Data Order (Time-Ordered, Reversed-Order)

This appendix presents the detailed translation evaluation results for the different data orderings—time-ordered and reversed-
order—used during the continual pre-training. For each of these settings, both the BLEU and COMET scores are provided.
The figure includes a comparison of these scores, highlighting the differences in translation performance across the various data
arrangements.

The results for the time-ordered and reversed-order configurations are shown in Figures 4 and 5.

Learning Curve of Continued Pretraining (chronological)
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Figure 4: Learning Curve of Continual Pre-training
Learning Curve of Continued Pretraining (reverse-chronological)
54.0 52.7 82.80
519 520 522 523 524 525 82.60
51'3 ————————— .
52.0 50.6 82.40
49.4 8243 8249 8249 82,52 8254 8252 8252 .
50.0 : 82.36 : 82.20
82.00
48.0 —
@ 81.80 W
B 46.0 81.60 Q
81.40
44.0
313 81.20
81.00
42.0
40.8 80.80
40.0 80.60
0 6.1M 122M 18.3M 24.4M 30.5M 36.6M 42.7M 49.8M 54.9M  61M
Sentence pairs
——BLEU ——COMET

Figure 5: Learning Curve of Continual Pre-training (reverse)
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D Sustainability Statement
D.1 CO2 Emission Related to Experiments

Experiments were conducted using a private infrastructure, which has a carbon efficiency of 0.432 kgCO2eq/kWh. A cumulative
of 400 hours of computation was performed on hardware of type A100 SXM4 80 GB (TDP of 400W).

Total emissions are estimated to be 34.56 kgCOzeq of which O percents were directly offset.

Estimations were conducted using the MachineLearning Impact calculator presented in Lacoste et al. (2019).
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