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Abstract

This study addresses the critical challenge of
data scarcity in machine translation for Indian
languages, particularly given their morpholog-
ical complexity and limited parallel data. We
investigate an effective strategy to maximize
the utility of existing data by generating nega-
tive samples from positive training instances us-
ing a progressive perturbation approach. This
is used to align the model with preferential
data using Kahneman-Tversky Optimization
(KTO). Comparing it against traditional Su-
pervised Fine-Tuning (SFT), we demonstrate
how generating negative samples and leverag-
ing KTO enhances data efficiency. By creat-
ing rejected samples through progressively per-
turbed translations from the available dataset,
we fine-tune the Llama 3.1 Instruct 8B model
using QLoRA across 16 language directions, in-
cluding English, Hindi, Bangla, Tamil, Telugu,
and Santali. Our results show that KTO-based
preference alignment with progressive pertur-
bation consistently outperforms SFT, achieving
significant gains in translation quality with an
average BLEU increase of 1.84 to 2.47 and
CHRF increase of 2.85 to 4.01 compared to
SFT for selected languages, while using the
same positive training samples and under simi-
lar computational constraints. This highlights
the potential of our negative sample genera-
tion strategy within KTO, especially in low-
resource scenarios.

1 Introduction

Machine Translation (MT) has made remarkable
progress in recent years, yet significant challenges
persist, particularly for low-resource languages.
This is evident in the diverse family of Indian lan-
guages, such as Tamil, with its agglutinative mor-
phology (Sarveswaran et al., 2021) and complex
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Figure 1: Performance Comparison of KTO (with Pro-
gressive Perturbation, using IndicTrans2 (IT2) output as
positive samples and Perturbed Gold translations from
BPCC Dataset (S.Gold) as negative samples) vs. SFT
(using IT2 output as positive samples) and Zero-Shot
on Llama 3.1 Instruct 8B.

suffixation, and Santali, which employs an Aus-
troasiatic script (Choksi, 2018) and follows an SOV
word order. These languages feature rich morpho-
logical systems that complicate tokenization and
alignment in MT (Kumar et al., 2009) while also
suffering from a scarcity of parallel corpora essen-
tial for training robust translation models.

The imbalance in training data between high-
resource and low-resource languages has motivated
the search for data-efficient techniques that maxi-
mize the utility of scarce resources. In this study,
we tackle this challenge for Indian language ma-
chine translation by leveraging an approach based
on preference alignment (Gisserot-Boukhlef et al.,
2024). Rather than requiring extra positive training
data, our method utilizes negative samples derived
from existing high-quality translations. This en-
ables the model to learn more effectively by distin-
guishing between subtle errors and accurate transla-
tions, thereby enhancing overall performance even
in resource-scarce settings.

KTO (Ethayarajh et al., 2024) distinguishes it-
self from other preference-based methods by its
flexibility in handling negative samples. Unlike
Direct Preference Optimization (DPO) (Mecklen-
burg et al., 2024), which ideally requires rejected
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completions for each positive example, and Prox-
imal Policy Optimization (PPO) (Schulman et al.,
2017), which necessitates the training of a sepa-
rate and computationally intensive reward model,
KTO allows for the utilization of negative samples
without demanding a one-to-one pairing with ev-
ery positive instance. This flexibility is particularly
advantageous in low-resource settings, where gen-
erating a large number of diverse negative samples
is challenging, and fine-tuning them increases com-
putational cost.

In this work, we propose a progressive pertur-
bation strategy to generate negative samples by
systematically adding controlled noise to positive
translations. These rejected samples, along with
the original positives, are then used with the KTO
algorithm for preference alignment. This approach
enhances translation quality without requiring addi-
tional parallel data, making it particularly effective
in low-resource scenarios.

We validate our approach on the Llama 3.1 In-
struct 8B model across 16 language directions in-
volving English, Hindi, Bangla, Tamil, Telugu, and
Santali. Experimental results demonstrate that our
KTO-based preference alignment with progressive
perturbation consistently outperforms traditional
SFT (Ouyang et al., 2022), yielding significant im-
provements in both BLEU and CHRF scores.

2 Related Work

Low resource machine translation (MT) remains a
persistent challenge, motivating a variety of strate-
gies to maximize data efficiency. Early work
demonstrated that careful structuring of training
data can significantly impact convergence and over-
all translation quality. For example, (Platanios
et al., 2019) introduced a competence-based cur-
riculum that adapts the complexity of training ex-
amples to the model’s evolving capabilities. In a
similar vein, (Zhang et al., 2018) and (Liu et al.,
2020) showed that progressively increasing data
complexity by ordering training examples from
simple to complex can lead to faster convergence
and improved performance in MT.

In addition to curriculum learning, data augmen-
tation techniques have been widely explored to
overcome the scarcity of parallel corpora in low-
resource settings. (Xia et al., 2019) augmented
training data using monolingual corpora from re-
lated high-resource languages, thereby enriching
the available signal without the need for additional

bilingual data. Similarly, (Ramesh et al., 2021)
proposed a method that leverages bilingual word
embeddings and transformer-based representations
(e.g., BERT (Devlin et al., 2019)) to introduce new
words and increase the presence of rare vocabulary
items in the training corpus. While effective, these
approaches typically require access to supplemen-
tary resources or complex augmentation pipelines.

Data quality also plays a critical role in MT, par-
ticularly when dealing with automatically gener-
ated or noisy datasets. To address this, (Kowtal
et al., 2024) developed a data selection method
that uses cross-lingual sentence representations de-
rived from a multilingual SBERT model (Reimers,
2019) to filter out semantically mismatched sen-
tence pairs. This filtering enhances the reliability
of the training data but does not directly tackle the
challenge of making optimal use of the available
examples.

Multilingual transfer learning offers another av-
enue for improving low-resource MT by exploiting
the inherent relatedness between languages. (Goyal
et al., 2020) combined techniques such as unified
transliteration and shared subword segmentation
with pre-training across multiple languages to en-
hance transfer learning capabilities. Although ef-
fective, such approaches generally require a joint
training framework that spans multiple language
pairs.

In contrast to these paradigms, our work adopts a
preference-based optimization strategy that directly
maximizes the utility of existing data. Instead of
relying solely on positive examples or external aug-
mentation, we generate informative negative sam-
ples through a progressive perturbation strategy. By
systematically degrading high-quality translations,
our approach creates rejected samples that force the
model to learn fine-grained distinctions between
accurate and flawed outputs.

3 Methodology

We opted to carry out our experiments across six
distinct languages divided into three categories as
listed below, originating from three to four different
language families and varying in resource availabil-
ity.

1. English to Indian Languages: Translations
from English to Bangla, Hindi, Santali, Tamil,
and Telugu.

2. Indian Languages to English: Translations
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Figure 2: Prompting Mechanism for Translation

from Bangla, Hindi, Santali, Tamil, and Tel-
ugu to English.

3. Indian to Indian Languages: Translations
between Hindi and Bangla, Tamil, and Tel-
ugu (excluding Santali due to limited parallel
data).

To address data scarcity in Indian language trans-
lation, we compare zero-shot inference (baseline),
SFT, and KTO. All experiments use the llamaFac-
tory toolkit 1 (Zheng et al., 2024).

3.1 Model Selection

For this study, we selected the Llama 3.1 Instruct
8B model 2 (Dubey et al., 2024) as the foundation
for fine-tuning. This choice was made after con-
ducting initial zero-shot experiments to assess the
baseline translation performance of several models
relevant to our tasks. Specifically, we evaluated
the Llama 3.1 Instruct 8B, Llama 3.2 Instruct 3B,
and Llama 3.2 Instruct 11B models in a zero-shot
setting across the language directions.

Table 1 summarizes the average BLEU and
CHRF scores for each model across the language
directions, evaluated on the Flores-200 devtest set.

Table 1: Average Zero-Shot BLEU and Chrf Scores for
Llama Models

Model BLEU Chrf

Llama3.1-8B 12.06 39.00
Llama3.2-3B 5.58 33.22
Llama3.2-11B 11.94 39.47

As evident from Table 1, the Llama 3.2 Instruct
3B model demonstrated significantly lower trans-
lation quality compared to both the 8B and 11B
1https://github.com/hiyouga/LLaMA-Factory
2https://huggingface.co/meta-llama/Meta-Llama-3.
1-8B-Instruct

parameter versions. Notably, the zero-shot trans-
lation performance of the Llama 3.1 Instruct 8B
and Llama 3.2 Instruct 11B models was remark-
ably similar. Given this performance parity, and
considering computational resource constraints for
extensive fine-tuning experiments, we opted to pro-
ceed with the Llama 3.1 Instruct 8B model.

3.2 Data and Preprocessing

To ensure diverse and representative training data,
we utilized the Wiki and Massive datasets from the
Bharat Parallel Corpus Collection (BPCC) (Gala
et al., 2023), sampling data as detailed in Table 2.
The languages involved are Bangla (Bengali script),
Hindi (Devanagari script), Santali (Ol Chiki script),
Telugu (Telugu script), English (Latin script), and
Tamil (Tamil script).

Language Pairs Sample Size
Eng ↔Hin 25,000
Eng ↔Ban 25,000
Eng ↔Tam 25,000
Eng ↔Tel 25,000
Eng ↔San 25,000
Hin ↔Ban 10,000
Hin ↔Tam 10,000
Hin ↔Tel 10,000

Table 2: Language Pairs and Sample Sizes. In this, Eng
refers to English, Hin refers to Hindi, Ban refers to
Bangla, Tam refers to Tamil, Tel refers to Telugu, Sat
refers to Santali

Throughout our experiments, a consistent
prompt format was maintained for all techniques
to ensure comparability. This prompt structure, vi-
sualized in Figure 2, includes specifications for the
source and target languages, the target script, and
the source sentence for translation.
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Perturbation Level Example Sentence

10% Original: A person with proliferative retinopathy will always be at risk for complications from new
bleeding as well as glaucoma, new blood vessels.
Perturbed: A bleeding with proliferative retinopathy will always be at risk for eagle from new person
as well as glaucoma, new blood vessels.

30% Original: The confluence of the Mudirapuzha, Nallathani, and Kundala rivers takes place in the heart
of the city.
Perturbed: The confluence of nervosa Mudirapuzha, kiskindha Nallathani, and excreted Kundala takes
place in the heart of the city.

50% Original: Most of the street children in Bangalore have come in search of business and new beginnings.
Perturbed: Most of the children Bangalore in street have come in search of business photos car new.

Table 3: Examples of english sentence perturbations at 10%, 30%, and 50% intensity levels.

3.3 Perturbation Strategy

To introduce controlled errors, we apply a set of
text modification operations that simulate common
translation errors:

• Word Addition: Randomly inserts a word
from a predefined vocabulary, disrupting flu-
ency and potential meaning.

• Word Deletion: Removes a random word,
leading to grammatical errors and incomplete
sentences.

• Word Shuffling: Swaps the position of two
random words, disrupting word order and
comprehensibility.

• Word Replacement: Replaces a random
word with another vocabulary word, introduc-
ing semantic errors.

The number of modifications depends on the
perturbation intensity level. For instance, at 30%
perturbation, a 20-word sentence undergoes ap-
proximately six modifications. This progressive
perturbation (50% → 30% → 10%) exposes the
model to coarse-to-fine errors, aligning with its im-
proving discrimination capability during training.
Some of the examples depicting the different levels
of intensity-perturbation can be seen in Table 3

We integrate a progressive perturbation strat-
egy with KTO to enhance model training. This
method systematically introduces controlled noise
into gold-standard human translations and Indic-
Trans2 (IT2) outputs, generating rejected comple-
tions for preference alignment. Perturbations are
applied at varying intensities (10%, 30%, 50%),
beginning with highly degraded (50%) translations
to establish clear negative examples, then progres-
sively reducing perturbation levels (30%, 10%) to

introduce more nuanced errors. This staged ap-
proach refines the model’s ability to distinguish
subtle translation flaws, improving overall transla-
tion quality.

4 Fine-tuning and Optimization

We compare SFT with KTO, both applied to the
Llama 3.1 Instruct 8B model.

4.1 Supervised Fine-Tuning
SFT serves as our baseline, evaluating standard
supervised learning with limited parallel data. We
explore two variations:

• SFT on Gold-Standard Translations: Fine-
tuning on a subset of the Massive and Wiki
datasets from BPCC using human translations
as ground truth, setting a benchmark for high-
quality supervision.

• SFT on IT2-Generated Translations: Fine-
tuning with IT2-generated translations (Gala
et al., 2023) as targets, assessing whether syn-
thetic data can supplement or replace human
translations in low resource settings.

These variations help assess the impact of differ-
ent supervision sources on translation performance.

4.2 Kahneman-Tversky Optimization
We evaluate KTO using four configurations to an-
alyze how different data sources influence prefer-
ence alignment:

• KTO-Gold-S.IT2: Gold-standard transla-
tions as preferred examples, with rejected sam-
ples from perturbed IT2 outputs.

• KTO-Gold-S.Gold: Both preferred and re-
jected examples from gold-standard transla-
tions, with perturbation applied for rejection
samples.
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Figure 3: KTO training data workflow using gold text and progressive perturbation.

• KTO-IT2-S.IT2: IT2 generated translations
as preferred examples, with perturbed ver-
sions as rejections.

• KTO-IT2-S.Gold: IT2 generated translations
as preferred examples, with perturbed gold-
standard translations as rejections.

These configurations systematically evaluate the
effectiveness of KTO in low resource translation,
demonstrating its potential to outperform SFT un-
der identical data constraints.

4.3 Training Configuration

We fine-tune the Llama 3.1 Instruct 8B model for 1
epoch for both the SFT and KTO experiments. Due
to computational constraints, further experimenta-
tion with additional epochs or technique combina-
tions was not feasible.

To enhance computational efficiency, we employ
4-bit quantization (Kim et al., 2024) using QLoRA
(Dettmers et al., 2023) for parameter-efficient fine-
tuning. The specific hyperparameter configurations
for LoRA are outlined in Table 5.

5 Evaluation

We evaluated the translation quality of the fine-
tuned models using BLEU3 (Post, 2018) and
CHRF4 (Popović, 2015) on the dev and devtest
splits of the Flores-200 Benchmark Dataset5

(Costa-jussà et al., 2022). We used the sacreBLEU
library for BLEU and chrF calculation. The Flores-
200 dataset provided a comprehensive benchmark
for evaluating machine translation across various
language pairs.

3https://github.com/mjpost/BLEU
4https://github.com/marian-nmt/chrf
5https://github.com/facebookresearch/flores

6 Results and Discussion

6.1 Overall Performance Comparison (SFT vs.
KTO)

Our experiments demonstrate the effectiveness of
KTO-based preference alignment with progres-
sive perturbation for low-resource Indian language
translation. As shown in Figure 1, KTO consis-
tently outperforms SFT in selected languages. In
the Flores-200 devtest set, we observed an average
BLEU improvement from 1.84 to 2.47 and CHRF
from 2.85 to 4.01 compared to SFT. These gains,
achieved with the same positive training data and
computational constraints, highlight the data effi-
ciency of our approach.

6.2 KTO Configuration Analysis
Among KTO variants, KTO_IT2_S.Gold achieved
the highest scores, while KTO_Gold_S.IT2 per-
formed the lowest.

Using IT2-generated translations as the pre-
ferred completion consistently outperformed gold-
standard human translations, aligning with trends
observed in SFT. This suggests that IT2 transla-
tions may provide a more effective learning signal
than gold translations in our setup. Additionally,
using perturbed gold translations (S.Gold) as re-
jected examples generally resulted in better model
alignment than perturbed IT2 translations (S.IT2),
likely due to the higher intrinsic quality of gold
translations.

6.3 Language-Specific Observations
A notable exception was Santali, where SFT out-
performed all KTO variants. This outcome is likely
due to the model’s limited initial proficiency in
Santali. Since KTO relies on negative examples, it
may amplify noise when the baseline quality is ex-
tremely low. In such cases, the model might learn
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Model Metric
English→XX XX→English Hin→XX XX→Hin

Hin Ban Tam Tel Sat Hin Ban Tam Tel Sat Ban Tam Tel Ban Tam Tel

Llama3.1-Instruct-8B
BLEU 17.43 7.64 4.54 7.43 0.03 32.71 25.14 19.79 24.92 0.63 7.51 4.03 6.12 14.16 9.36 11.52
CHRF 45.04 39.33 38.74 37.44 2.40 60.74 54.30 49.44 53.41 18.88 38.88 37.68 36.66 39.88 34.50 36.64

Llama3.2-Instruct-3B
BLEU 7.97 4.04 4.10 6.01 0.01 10.14 9.07 8.38 10.56 0.03 6.11 4.14 5.33 4.61 3.45 5.30
CHRF 36.75 35.35 39.88 38.66 2.06 47.49 44.56 42.27 46.16 3.47 37.25 37.90 35.99 27.39 25.75 30.66

Llama3.2-Instruct-11B
BLEU 17.06 7.08 4.46 6.60 0.01 30.94 25.29 19.95 26.24 1.63 7.31 3.95 5.71 13.87 8.69 12.22
CHRF 44.68 38.23 40.22 37.76 2.65 59.85 54.62 50.19 54.59 23.41 38.70 38.01 36.19 40.51 33.42 38.41

SFT_Gold
BLEU 20.74 8.81 6.75 10.38 2.24 34.73 27.37 24.64 28.95 7.54 8.36 5.68 7.70 14.73 12.33 13.95
CHRF 46.98 40.23 44.30 44.09 27.74 61.17 54.98 51.93 56.13 30.21 39.48 41.34 40.39 40.59 37.00 40.04

SFT_IT2
BLEU 21.05 10.15 8.20 11.10 2.51 35.25 28.30 25.45 30.15 7.8 9.10 6.25 7.35 15.30 12.20 14.15
CHRF 48.20 43.05 45.35 46.25 31.61 61.05 55.30 52.45 56.15 30.56 41.15 43.20 42.35 42.10 38.25 40.10

KTO_Gold_S.IT2
BLEU 20.88 9.64 7.25 9.57 0.78 34.68 27.27 23.95 28.17 4.63 8.84 5.21 7.35 15.41 11.94 14.21
CHRF 47.48 41.96 45.10 43.81 19.34 61.26 54.89 51.63 55.15 25.14 40.65 41.91 40.47 41.40 37.00 40.01

KTO_Gold_S.Gold
BLEU 21.15 9.44 7.04 10.10 0.70 34.31 27.57 24.28 28.19 4.50 8.50 5.67 7.18 14.74 12.31 13.89
CHRF 48.04 42.05 44.82 44.08 19.22 61.13 55.40 51.76 55.49 25.18 40.69 41.50 40.30 40.94 37.33 39.96

KTO_IT2_S.IT2
BLEU 21.99 11.15 8.71 11.49 0.15 36.68 30.09 27.11 31.17 5.66 10.09 7.32 9.13 16.99 13.68 15.30
CHRF 50.02 45.01 48.40 47.30 13.42 62.64 57.20 53.95 57.52 26.17 43.00 45.98 43.71 43.60 39.40 41.69

KTO_IT2_S.Gold
BLEU 25.26 13.81 6.00 10.09 0.43 38.26 30.96 27.78 31.68 7.46 10.96 6.35 10.08 17.33 14.55 16.64
CHRF 51.21 47.74 49.93 48.63 14.56 63.72 57.94 54.93 58.27 28.18 44.27 46.17 44.67 44.10 40.17 43.07

Table 4: Performance comparison of Zero-Shot Llama models vs. SFT & KTO fine-tuned Llama 3.1 Instruct-8B on
Flores DevTest. SFT models use supervised fine-tuning with either gold-standard human translations (SFT_Gold) or
IndicTrans2-generated translations (SFT_IT2). KTO models apply Kahneman-Tversky Optimization with different
preference and rejection criteria: gold-standard translations with perturbed IT2 (KTO_Gold_S.IT2), gold-standard
translations with perturbed gold-standard translations (KTO_Gold_S.Gold), IT2 translations with perturbed IT2
(KTO_IT2_S.IT2), and IT2 translations with perturbed gold-standard translations (KTO_IT2_S.Gold). All SFT and
KTO models are fine-tuned versions of Llama 3.1 Instruct-8B.

Method Value
LoRA modules PEFT
Rank 8
Alpha 8
Dropout 0
Learning rate 5e-5
Effective batch size 64
Epochs 1

Table 5: Hyper-parameter configurations for LoRA

to avoid all translation choices from the Santali
data, including those that are correct.

7 Conclusion

This study explores KTO with progressive perturba-
tion for Indian language translation, demonstrating
its superiority over SFT in most cases and high-
lighting its potential to maximize the utility of exist-
ing data in resource-scarce scenarios. Our method
systematically degrades high-quality translations
through controlled perturbations, generating a spec-
trum of negative examples ranging from overtly
erroneous to subtly flawed outputs. These nega-
tive samples provide a rich training signal, help-
ing the model distinguish between accurate and
error-prone translations, thereby enabling efficient

learning from limited data.
Notably, IT2-generated translations were more

effective than gold-standard translations as pre-
ferred completions, raising questions about the
reliability of the gold data in the BPCC Dataset.
However, KTO was less effective in extremely
low-resource cases like Santali, where SFT outper-
formed it, suggesting that KTO’s effectiveness de-
pends on the model’s initial proficiency in a given
language.

8 Limitations

In conducting our experiments, we relied on high-
performance GPUs, specifically RTXA6000. How-
ever, we acknowledge that not everyone may
have access to such powerful computing resources,
which could present challenges in reproducing our
experiments and achieving identical results. De-
spite these computing limitations, we were still
able to carry out meaningful experiments, although
we were unable to conduct more comprehensive
analyses.

9 Future Work

Future work could explore several directions, in-
cluding experimenting with different perturbation
schedules for performance improvements. Ad-
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ditionally, addressing the challenges of applying
KTO with progressive perturbation to low-resource
languages like Santali is crucial, possibly by adapt-
ing the strategy or exploring alternative training
objectives. Finally, applying this approach to other
low-resource machine translation tasks across lan-
guage families and domains could help assess its
generalizability.

10 CO2 Emission Related to Experiments

Experiments were conducted using a private infras-
tructure, which has a carbon efficiency of 0.813
kgCO2eq/kWh. A cumulative of 648 hours of com-
putation was performed on hardware of type RTX
A6000 (TDP of 300W).

Total emissions are estimated to be 158.05
kgCO2eq of which 0 percent were directly offset.

Estimations were conducted using the Machine-
Learning Impact calculator presented in (Lacoste
et al., 2019).
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A Appendix

Model Metric
English→XX XX→English Hin→XX XX→Hin

Hin Ban Tam Tel Sat Hin Ban Tam Tel Sat Ban Tam Tel Ban Tam Tel

Llama3.1-Instruct-8B
BLEU 17.37 7.45 4.63 7.21 0.01 31.06 26.31 20.85 26.60 0.53 7.56 4.32 6.00 14.18 10.15 12.01
CHRF 45.76 39.54 39.05 37.89 2.16 60.23 55.12 50.37 54.82 18.35 39.33 38.29 36.75 39.95 35.39 37.20

Llama3.2-Instruct-3B
BLEU 7.61 2.93 3.64 5.97 0.01 8.79 8.11 7.99 10.90 0.02 7.24 4.13 5.45 4.29 3.02 4.98
CHRF 36.64 34.11 38.49 39.31 1.96 45.34 43.49 41.42 46.84 3.53 39.12 37.79 36.14 27.30 24.26 30.97

Llama3.2-Instruct-11B
BLEU 17.30 8.04 4.68 6.14 0.04 31.36 25.49 21.24 27.17 1.42 6.83 3.31 5.76 14.09 9.66 12.65
CHRF 45.15 40.39 40.91 36.78 3.05 60.03 55.00 50.70 55.36 22.83 38.87 34.70 36.69 41.20 34.72 39.24

SFT_Gold
BLEU 21.79 8.50 7.10 10.23 2.31 35.26 28.69 25.79 30.90 7.62 7.61 6.27 7.80 15.56 12.65 15.06
CHRF 48.30 40.98 44.58 44.17 27.78 61.63 55.87 52.63 57.62 30.18 39.80 41.96 40.92 41.84 37.60 41.17

SFT_IT2
BLEU 23.45 12.34 10.05 12.30 3.10 36.15 30.25 27.40 32.10 6.05 9.15 7.25 8.40 17.20 14.35 16.50
CHRF 50.12 45.67 48.24 47.10 29.62 62.34 57.12 54.30 58.45 25.10 43.15 45.30 43.20 44.05 41.25 43.40

KTO_Gold_S.IT2
BLEU 19.52 7.67 5.43 7.73 0.57 33.98 28.55 24.17 29.53 5.13 6.68 4.37 6.76 13.34 11.02 12.37
CHRF 46.55 40.12 41.72 40.44 19.00 61.02 55.68 51.20 56.52 25.12 38.61 39.04 38.66 39.69 35.65 38.40

KTO_Gold_S.Gold
BLEU 22.05 9.71 7.69 10.35 0.96 33.98 28.55 24.91 29.60 5.15 8.18 6.02 7.36 16.00 12.62 14.83
CHRF 48.87 42.81 45.38 44.20 19.23 61.02 55.68 51.73 56.61 25.26 41.10 42.04 40.56 42.62 37.51 41.15

KTO_IT2_S.IT2
BLEU 23.90 11.79 10.04 12.33 0.15 36.67 30.57 27.54 32.31 6.13 9.70 7.83 8.82 17.12 14.66 16.53
CHRF 51.16 45.98 49.32 47.13 12.87 62.59 57.86 54.56 58.53 26.21 43.49 46.16 43.60 44.24 40.56 42.85

KTO_IT2_S.Gold
BLEU 26.37 14.01 5.60 12.01 0.34 38.78 32.14 28.56 33.90 7.33 10.93 6.77 10.30 18.24 15.60 16.98
CHRF 52.08 48.55 49.44 49.15 14.02 63.84 59.07 55.26 60.00 28.18 44.69 46.57 45.12 45.07 40.96 43.53

Table 6: Performance comparison of Zero-Shot Llama models vs. SFT & KTO fine-tuned Llama 3.1 Instruct-8B on
Flores Dev. SFT models use supervised fine-tuning with either gold-standard human translations (SFT_Gold) or
IndicTrans2-generated translations (SFT_IT2). KTO models apply Kahneman-Tversky Optimization with different
preference and rejection criteria: gold-standard translations with perturbed IT2 (KTO_Gold_S.IT2), gold-standard
translations with perturbed gold-standard translations (KTO_Gold_S.Gold), IT2 translations with perturbed IT2
(KTO_IT2_S.IT2), and IT2 translations with perturbed gold-standard translations (KTO_IT2_S.Gold). All SFT and
KTO models are fine-tuned versions of Llama 3.1 Instruct-8B.
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