@inproceedings{loock-etal-2025-mt,
title = "{MT} or not {MT}? Do translation specialists know a machine-translated text when they see one?",
author = "Loock, Rudy and
Moulard, Nathalie and
Pacinella, Quentin",
editor = "Bouillon, Pierrette and
Gerlach, Johanna and
Girletti, Sabrina and
Volkart, Lise and
Rubino, Raphael and
Sennrich, Rico and
Farinha, Ana C. and
Gaido, Marco and
Daems, Joke and
Kenny, Dorothy and
Moniz, Helena and
Szoc, Sara",
booktitle = "Proceedings of Machine Translation Summit XX: Volume 1",
month = jun,
year = "2025",
address = "Geneva, Switzerland",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2025.mtsummit-1.35/",
pages = "442--454",
ISBN = "978-2-9701897-0-1",
abstract = "In this article, we investigate translation specialists' capacity to identify raw machine translation (MT) output in comparison with so-called ``human'' translations produced without any use of MT. Specifically, we measure this capacity via an online activity, based on different criteria: (i) degree of expertise (translation students vs. professionals with at least 5 years' experience), (ii) MT engine (DeepL, Google Translate, Reverso, ChatGPT), and (iii) length of input (1-3 sentences). A complementary, qualitative analysis, based on participants' feedback, provides interesting insight on how they discriminate between raw MT output and human translations."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="loock-etal-2025-mt">
<titleInfo>
<title>MT or not MT? Do translation specialists know a machine-translated text when they see one?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rudy</namePart>
<namePart type="family">Loock</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathalie</namePart>
<namePart type="family">Moulard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Quentin</namePart>
<namePart type="family">Pacinella</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of Machine Translation Summit XX: Volume 1</title>
</titleInfo>
<name type="personal">
<namePart type="given">Pierrette</namePart>
<namePart type="family">Bouillon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Johanna</namePart>
<namePart type="family">Gerlach</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sabrina</namePart>
<namePart type="family">Girletti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lise</namePart>
<namePart type="family">Volkart</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raphael</namePart>
<namePart type="family">Rubino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rico</namePart>
<namePart type="family">Sennrich</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ana</namePart>
<namePart type="given">C</namePart>
<namePart type="family">Farinha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Gaido</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joke</namePart>
<namePart type="family">Daems</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dorothy</namePart>
<namePart type="family">Kenny</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Moniz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Szoc</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Association for Machine Translation</publisher>
<place>
<placeTerm type="text">Geneva, Switzerland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">978-2-9701897-0-1</identifier>
</relatedItem>
<abstract>In this article, we investigate translation specialists’ capacity to identify raw machine translation (MT) output in comparison with so-called “human” translations produced without any use of MT. Specifically, we measure this capacity via an online activity, based on different criteria: (i) degree of expertise (translation students vs. professionals with at least 5 years’ experience), (ii) MT engine (DeepL, Google Translate, Reverso, ChatGPT), and (iii) length of input (1-3 sentences). A complementary, qualitative analysis, based on participants’ feedback, provides interesting insight on how they discriminate between raw MT output and human translations.</abstract>
<identifier type="citekey">loock-etal-2025-mt</identifier>
<location>
<url>https://aclanthology.org/2025.mtsummit-1.35/</url>
</location>
<part>
<date>2025-06</date>
<extent unit="page">
<start>442</start>
<end>454</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MT or not MT? Do translation specialists know a machine-translated text when they see one?
%A Loock, Rudy
%A Moulard, Nathalie
%A Pacinella, Quentin
%Y Bouillon, Pierrette
%Y Gerlach, Johanna
%Y Girletti, Sabrina
%Y Volkart, Lise
%Y Rubino, Raphael
%Y Sennrich, Rico
%Y Farinha, Ana C.
%Y Gaido, Marco
%Y Daems, Joke
%Y Kenny, Dorothy
%Y Moniz, Helena
%Y Szoc, Sara
%S Proceedings of Machine Translation Summit XX: Volume 1
%D 2025
%8 June
%I European Association for Machine Translation
%C Geneva, Switzerland
%@ 978-2-9701897-0-1
%F loock-etal-2025-mt
%X In this article, we investigate translation specialists’ capacity to identify raw machine translation (MT) output in comparison with so-called “human” translations produced without any use of MT. Specifically, we measure this capacity via an online activity, based on different criteria: (i) degree of expertise (translation students vs. professionals with at least 5 years’ experience), (ii) MT engine (DeepL, Google Translate, Reverso, ChatGPT), and (iii) length of input (1-3 sentences). A complementary, qualitative analysis, based on participants’ feedback, provides interesting insight on how they discriminate between raw MT output and human translations.
%U https://aclanthology.org/2025.mtsummit-1.35/
%P 442-454
Markdown (Informal)
[MT or not MT? Do translation specialists know a machine-translated text when they see one?](https://aclanthology.org/2025.mtsummit-1.35/) (Loock et al., MTSummit 2025)
ACL