@inproceedings{castaldo-etal-2025-extending,
title = "Extending {CREAMT}: Leveraging Large Language Models for Literary Translation Post-Editing",
author = "Castaldo, Antonio and
Castilho, Sheila and
Moorkens, Joss and
Monti, Johanna",
editor = "Bouillon, Pierrette and
Gerlach, Johanna and
Girletti, Sabrina and
Volkart, Lise and
Rubino, Raphael and
Sennrich, Rico and
Farinha, Ana C. and
Gaido, Marco and
Daems, Joke and
Kenny, Dorothy and
Moniz, Helena and
Szoc, Sara",
booktitle = "Proceedings of Machine Translation Summit XX: Volume 1",
month = jun,
year = "2025",
address = "Geneva, Switzerland",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2025.mtsummit-1.40/",
pages = "506--515",
ISBN = "978-2-9701897-0-1",
abstract = "Post-editing machine translation (MT) for creative texts, such as literature, requires balancing efficiency with the preservation of creativity and style. While neural MT systems struggle with these challenges, large language models (LLMs) offer improved capabilities for context-aware and creative translation. This study evaluates the feasibility of post-editing literary translations generated by LLMs. Using a custom research tool, we collaborated with professional literary translators to analyze editing time, quality, and creativity. Our results indicate that post-editing (PE) LLM-generated translations significantly reduce editing time compared to human translation while maintaining a similar level of creativity. The minimal difference in creativity between PE and MT, combined with substantial productivity gains, suggests that LLMs may effectively support literary translators."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="castaldo-etal-2025-extending">
<titleInfo>
<title>Extending CREAMT: Leveraging Large Language Models for Literary Translation Post-Editing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Antonio</namePart>
<namePart type="family">Castaldo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sheila</namePart>
<namePart type="family">Castilho</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joss</namePart>
<namePart type="family">Moorkens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Johanna</namePart>
<namePart type="family">Monti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of Machine Translation Summit XX: Volume 1</title>
</titleInfo>
<name type="personal">
<namePart type="given">Pierrette</namePart>
<namePart type="family">Bouillon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Johanna</namePart>
<namePart type="family">Gerlach</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sabrina</namePart>
<namePart type="family">Girletti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lise</namePart>
<namePart type="family">Volkart</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raphael</namePart>
<namePart type="family">Rubino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rico</namePart>
<namePart type="family">Sennrich</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ana</namePart>
<namePart type="given">C</namePart>
<namePart type="family">Farinha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Gaido</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joke</namePart>
<namePart type="family">Daems</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dorothy</namePart>
<namePart type="family">Kenny</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Moniz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Szoc</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Association for Machine Translation</publisher>
<place>
<placeTerm type="text">Geneva, Switzerland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">978-2-9701897-0-1</identifier>
</relatedItem>
<abstract>Post-editing machine translation (MT) for creative texts, such as literature, requires balancing efficiency with the preservation of creativity and style. While neural MT systems struggle with these challenges, large language models (LLMs) offer improved capabilities for context-aware and creative translation. This study evaluates the feasibility of post-editing literary translations generated by LLMs. Using a custom research tool, we collaborated with professional literary translators to analyze editing time, quality, and creativity. Our results indicate that post-editing (PE) LLM-generated translations significantly reduce editing time compared to human translation while maintaining a similar level of creativity. The minimal difference in creativity between PE and MT, combined with substantial productivity gains, suggests that LLMs may effectively support literary translators.</abstract>
<identifier type="citekey">castaldo-etal-2025-extending</identifier>
<location>
<url>https://aclanthology.org/2025.mtsummit-1.40/</url>
</location>
<part>
<date>2025-06</date>
<extent unit="page">
<start>506</start>
<end>515</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Extending CREAMT: Leveraging Large Language Models for Literary Translation Post-Editing
%A Castaldo, Antonio
%A Castilho, Sheila
%A Moorkens, Joss
%A Monti, Johanna
%Y Bouillon, Pierrette
%Y Gerlach, Johanna
%Y Girletti, Sabrina
%Y Volkart, Lise
%Y Rubino, Raphael
%Y Sennrich, Rico
%Y Farinha, Ana C.
%Y Gaido, Marco
%Y Daems, Joke
%Y Kenny, Dorothy
%Y Moniz, Helena
%Y Szoc, Sara
%S Proceedings of Machine Translation Summit XX: Volume 1
%D 2025
%8 June
%I European Association for Machine Translation
%C Geneva, Switzerland
%@ 978-2-9701897-0-1
%F castaldo-etal-2025-extending
%X Post-editing machine translation (MT) for creative texts, such as literature, requires balancing efficiency with the preservation of creativity and style. While neural MT systems struggle with these challenges, large language models (LLMs) offer improved capabilities for context-aware and creative translation. This study evaluates the feasibility of post-editing literary translations generated by LLMs. Using a custom research tool, we collaborated with professional literary translators to analyze editing time, quality, and creativity. Our results indicate that post-editing (PE) LLM-generated translations significantly reduce editing time compared to human translation while maintaining a similar level of creativity. The minimal difference in creativity between PE and MT, combined with substantial productivity gains, suggests that LLMs may effectively support literary translators.
%U https://aclanthology.org/2025.mtsummit-1.40/
%P 506-515
Markdown (Informal)
[Extending CREAMT: Leveraging Large Language Models for Literary Translation Post-Editing](https://aclanthology.org/2025.mtsummit-1.40/) (Castaldo et al., MTSummit 2025)
ACL