@inproceedings{du-etal-2025-optimising,
title = "Optimising {C}hat{GPT} for creativity in literary translation: A case study from {E}nglish into {D}utch, {C}hinese, {C}atalan and {S}panish",
author = "Du, Shuxiang and
Arenas, Ana Guerberof and
Toral, Antonio and
Gerrits, Kyo and
Borillo, Josep Marco",
editor = "Bouillon, Pierrette and
Gerlach, Johanna and
Girletti, Sabrina and
Volkart, Lise and
Rubino, Raphael and
Sennrich, Rico and
Farinha, Ana C. and
Gaido, Marco and
Daems, Joke and
Kenny, Dorothy and
Moniz, Helena and
Szoc, Sara",
booktitle = "Proceedings of Machine Translation Summit XX: Volume 1",
month = jun,
year = "2025",
address = "Geneva, Switzerland",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2025.mtsummit-1.44/",
pages = "578--591",
ISBN = "978-2-9701897-0-1",
abstract = "This study examines the variability of ChatGPT{'}s machine translation (MT) outputs across six different configurations in four languages, with a focus on creativity in a literary text. We evaluate GPT translations in different text granularity levels, temperature settings and prompting strategies with a Creativity Score formula. We found that prompting ChatGPT with a minimal instruction yields the best creative translations, with Translate the following text into [TG] creatively at the temperature of 1.0 outperforming other configurations and DeepL in Spanish, Dutch, and Chinese. Nonetheless, ChatGPT consistently underperforms compared to human translation (HT). All the code and data are available at Repository URL will be provided with camera-ready version."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="du-etal-2025-optimising">
<titleInfo>
<title>Optimising ChatGPT for creativity in literary translation: A case study from English into Dutch, Chinese, Catalan and Spanish</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shuxiang</namePart>
<namePart type="family">Du</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ana</namePart>
<namePart type="given">Guerberof</namePart>
<namePart type="family">Arenas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antonio</namePart>
<namePart type="family">Toral</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyo</namePart>
<namePart type="family">Gerrits</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Josep</namePart>
<namePart type="given">Marco</namePart>
<namePart type="family">Borillo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of Machine Translation Summit XX: Volume 1</title>
</titleInfo>
<name type="personal">
<namePart type="given">Pierrette</namePart>
<namePart type="family">Bouillon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Johanna</namePart>
<namePart type="family">Gerlach</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sabrina</namePart>
<namePart type="family">Girletti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lise</namePart>
<namePart type="family">Volkart</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raphael</namePart>
<namePart type="family">Rubino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rico</namePart>
<namePart type="family">Sennrich</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ana</namePart>
<namePart type="given">C</namePart>
<namePart type="family">Farinha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Gaido</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joke</namePart>
<namePart type="family">Daems</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dorothy</namePart>
<namePart type="family">Kenny</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Moniz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Szoc</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Association for Machine Translation</publisher>
<place>
<placeTerm type="text">Geneva, Switzerland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">978-2-9701897-0-1</identifier>
</relatedItem>
<abstract>This study examines the variability of ChatGPT’s machine translation (MT) outputs across six different configurations in four languages, with a focus on creativity in a literary text. We evaluate GPT translations in different text granularity levels, temperature settings and prompting strategies with a Creativity Score formula. We found that prompting ChatGPT with a minimal instruction yields the best creative translations, with Translate the following text into [TG] creatively at the temperature of 1.0 outperforming other configurations and DeepL in Spanish, Dutch, and Chinese. Nonetheless, ChatGPT consistently underperforms compared to human translation (HT). All the code and data are available at Repository URL will be provided with camera-ready version.</abstract>
<identifier type="citekey">du-etal-2025-optimising</identifier>
<location>
<url>https://aclanthology.org/2025.mtsummit-1.44/</url>
</location>
<part>
<date>2025-06</date>
<extent unit="page">
<start>578</start>
<end>591</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Optimising ChatGPT for creativity in literary translation: A case study from English into Dutch, Chinese, Catalan and Spanish
%A Du, Shuxiang
%A Arenas, Ana Guerberof
%A Toral, Antonio
%A Gerrits, Kyo
%A Borillo, Josep Marco
%Y Bouillon, Pierrette
%Y Gerlach, Johanna
%Y Girletti, Sabrina
%Y Volkart, Lise
%Y Rubino, Raphael
%Y Sennrich, Rico
%Y Farinha, Ana C.
%Y Gaido, Marco
%Y Daems, Joke
%Y Kenny, Dorothy
%Y Moniz, Helena
%Y Szoc, Sara
%S Proceedings of Machine Translation Summit XX: Volume 1
%D 2025
%8 June
%I European Association for Machine Translation
%C Geneva, Switzerland
%@ 978-2-9701897-0-1
%F du-etal-2025-optimising
%X This study examines the variability of ChatGPT’s machine translation (MT) outputs across six different configurations in four languages, with a focus on creativity in a literary text. We evaluate GPT translations in different text granularity levels, temperature settings and prompting strategies with a Creativity Score formula. We found that prompting ChatGPT with a minimal instruction yields the best creative translations, with Translate the following text into [TG] creatively at the temperature of 1.0 outperforming other configurations and DeepL in Spanish, Dutch, and Chinese. Nonetheless, ChatGPT consistently underperforms compared to human translation (HT). All the code and data are available at Repository URL will be provided with camera-ready version.
%U https://aclanthology.org/2025.mtsummit-1.44/
%P 578-591
Markdown (Informal)
[Optimising ChatGPT for creativity in literary translation: A case study from English into Dutch, Chinese, Catalan and Spanish](https://aclanthology.org/2025.mtsummit-1.44/) (Du et al., MTSummit 2025)
ACL