@inproceedings{seo-etal-2025-sentence,
title = "A Sentence-Level Visualization of Attention in Large Language Models",
author = "Seo, Seongbum and
Yoo, Sangbong and
Lee, Hyelim and
Jang, Yun and
Park, Ji Hwan and
Kim, Jeong-Nam",
editor = "Dziri, Nouha and
Ren, Sean (Xiang) and
Diao, Shizhe",
booktitle = "Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (System Demonstrations)",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.naacl-demo.27/",
doi = "10.18653/v1/2025.naacl-demo.27",
pages = "313--320",
ISBN = "979-8-89176-191-9",
abstract = "We introduce SAVIS, a sentence-level attention visualization tool that enhances the interpretability of long documents processed by Large Language Models (LLMs). By computing inter-sentence attention (ISA) through token-level attention aggregation, SAVIS reduces the complexity of attention analysis, enabling users to identify meaningful document-level patterns. The tool offers an interactive interface for exploring how sentences relate to each other in model processing. Our comparative analysis with existing visualization tools demonstrates that SAVIS improves task accuracy and reduces error identification time. We demonstrate its effectiveness for text analysis applications through case studies on various analysis tasks. Our open-source tool is available at https://pypi.org/project/savis with a screencast video at https://youtu.be/fTZZPHA55So."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="seo-etal-2025-sentence">
<titleInfo>
<title>A Sentence-Level Visualization of Attention in Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Seongbum</namePart>
<namePart type="family">Seo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sangbong</namePart>
<namePart type="family">Yoo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hyelim</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun</namePart>
<namePart type="family">Jang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ji</namePart>
<namePart type="given">Hwan</namePart>
<namePart type="family">Park</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jeong-Nam</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (System Demonstrations)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nouha</namePart>
<namePart type="family">Dziri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sean</namePart>
<namePart type="given">(Xiang)</namePart>
<namePart type="family">Ren</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shizhe</namePart>
<namePart type="family">Diao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-191-9</identifier>
</relatedItem>
<abstract>We introduce SAVIS, a sentence-level attention visualization tool that enhances the interpretability of long documents processed by Large Language Models (LLMs). By computing inter-sentence attention (ISA) through token-level attention aggregation, SAVIS reduces the complexity of attention analysis, enabling users to identify meaningful document-level patterns. The tool offers an interactive interface for exploring how sentences relate to each other in model processing. Our comparative analysis with existing visualization tools demonstrates that SAVIS improves task accuracy and reduces error identification time. We demonstrate its effectiveness for text analysis applications through case studies on various analysis tasks. Our open-source tool is available at https://pypi.org/project/savis with a screencast video at https://youtu.be/fTZZPHA55So.</abstract>
<identifier type="citekey">seo-etal-2025-sentence</identifier>
<identifier type="doi">10.18653/v1/2025.naacl-demo.27</identifier>
<location>
<url>https://aclanthology.org/2025.naacl-demo.27/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>313</start>
<end>320</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Sentence-Level Visualization of Attention in Large Language Models
%A Seo, Seongbum
%A Yoo, Sangbong
%A Lee, Hyelim
%A Jang, Yun
%A Park, Ji Hwan
%A Kim, Jeong-Nam
%Y Dziri, Nouha
%Y Ren, Sean (Xiang)
%Y Diao, Shizhe
%S Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (System Demonstrations)
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-191-9
%F seo-etal-2025-sentence
%X We introduce SAVIS, a sentence-level attention visualization tool that enhances the interpretability of long documents processed by Large Language Models (LLMs). By computing inter-sentence attention (ISA) through token-level attention aggregation, SAVIS reduces the complexity of attention analysis, enabling users to identify meaningful document-level patterns. The tool offers an interactive interface for exploring how sentences relate to each other in model processing. Our comparative analysis with existing visualization tools demonstrates that SAVIS improves task accuracy and reduces error identification time. We demonstrate its effectiveness for text analysis applications through case studies on various analysis tasks. Our open-source tool is available at https://pypi.org/project/savis with a screencast video at https://youtu.be/fTZZPHA55So.
%R 10.18653/v1/2025.naacl-demo.27
%U https://aclanthology.org/2025.naacl-demo.27/
%U https://doi.org/10.18653/v1/2025.naacl-demo.27
%P 313-320
Markdown (Informal)
[A Sentence-Level Visualization of Attention in Large Language Models](https://aclanthology.org/2025.naacl-demo.27/) (Seo et al., NAACL 2025)
ACL
- Seongbum Seo, Sangbong Yoo, Hyelim Lee, Yun Jang, Ji Hwan Park, and Jeong-Nam Kim. 2025. A Sentence-Level Visualization of Attention in Large Language Models. In Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (System Demonstrations), pages 313–320, Albuquerque, New Mexico. Association for Computational Linguistics.