@inproceedings{tao-etal-2025-aloha,
title = "{ALOHA}: Empowering Multilingual Agent for University Orientation with Hierarchical Retrieval",
author = "Tao, Mingxu and
Tang, Bowen and
Ma, Mingxuan and
Zhang, Yining and
Li, Hourun and
Wen, Feifan and
Hao, Ma and
Yang, Jia",
editor = "Dziri, Nouha and
Ren, Sean (Xiang) and
Diao, Shizhe",
booktitle = "Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (System Demonstrations)",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.naacl-demo.32/",
doi = "10.18653/v1/2025.naacl-demo.32",
pages = "383--392",
ISBN = "979-8-89176-191-9",
abstract = "The rise of Large Language Models (LLMs) revolutionizes information retrieval, allowing users to obtain required answers through complex instructions within conversations. However, publicly available services remain inadequate in addressing the needs of faculty and students to search campus-specific information. It is primarily due to the LLM{'}s lack of domain-specific knowledge and the limitation of search engines in supporting multilingual and timely scenarios. To tackle these challenges, we introduce ALOHA, a multilingual agent enhanced by hierarchical retrieval for university orientation. We also integrate external APIs into the front-end interface to provide interactive service. The human evaluation and case study show our proposed system has strong capabilities to yield correct, timely, and user-friendly responses to the queries in multiple languages, surpassing commercial chatbots and search engines. The system has been deployed and has provided service for more than 12,000 people."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tao-etal-2025-aloha">
<titleInfo>
<title>ALOHA: Empowering Multilingual Agent for University Orientation with Hierarchical Retrieval</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mingxu</namePart>
<namePart type="family">Tao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bowen</namePart>
<namePart type="family">Tang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mingxuan</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yining</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hourun</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Feifan</namePart>
<namePart type="family">Wen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ma</namePart>
<namePart type="family">Hao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jia</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (System Demonstrations)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nouha</namePart>
<namePart type="family">Dziri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sean</namePart>
<namePart type="given">(Xiang)</namePart>
<namePart type="family">Ren</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shizhe</namePart>
<namePart type="family">Diao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-191-9</identifier>
</relatedItem>
<abstract>The rise of Large Language Models (LLMs) revolutionizes information retrieval, allowing users to obtain required answers through complex instructions within conversations. However, publicly available services remain inadequate in addressing the needs of faculty and students to search campus-specific information. It is primarily due to the LLM’s lack of domain-specific knowledge and the limitation of search engines in supporting multilingual and timely scenarios. To tackle these challenges, we introduce ALOHA, a multilingual agent enhanced by hierarchical retrieval for university orientation. We also integrate external APIs into the front-end interface to provide interactive service. The human evaluation and case study show our proposed system has strong capabilities to yield correct, timely, and user-friendly responses to the queries in multiple languages, surpassing commercial chatbots and search engines. The system has been deployed and has provided service for more than 12,000 people.</abstract>
<identifier type="citekey">tao-etal-2025-aloha</identifier>
<identifier type="doi">10.18653/v1/2025.naacl-demo.32</identifier>
<location>
<url>https://aclanthology.org/2025.naacl-demo.32/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>383</start>
<end>392</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ALOHA: Empowering Multilingual Agent for University Orientation with Hierarchical Retrieval
%A Tao, Mingxu
%A Tang, Bowen
%A Ma, Mingxuan
%A Zhang, Yining
%A Li, Hourun
%A Wen, Feifan
%A Hao, Ma
%A Yang, Jia
%Y Dziri, Nouha
%Y Ren, Sean (Xiang)
%Y Diao, Shizhe
%S Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (System Demonstrations)
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-191-9
%F tao-etal-2025-aloha
%X The rise of Large Language Models (LLMs) revolutionizes information retrieval, allowing users to obtain required answers through complex instructions within conversations. However, publicly available services remain inadequate in addressing the needs of faculty and students to search campus-specific information. It is primarily due to the LLM’s lack of domain-specific knowledge and the limitation of search engines in supporting multilingual and timely scenarios. To tackle these challenges, we introduce ALOHA, a multilingual agent enhanced by hierarchical retrieval for university orientation. We also integrate external APIs into the front-end interface to provide interactive service. The human evaluation and case study show our proposed system has strong capabilities to yield correct, timely, and user-friendly responses to the queries in multiple languages, surpassing commercial chatbots and search engines. The system has been deployed and has provided service for more than 12,000 people.
%R 10.18653/v1/2025.naacl-demo.32
%U https://aclanthology.org/2025.naacl-demo.32/
%U https://doi.org/10.18653/v1/2025.naacl-demo.32
%P 383-392
Markdown (Informal)
[ALOHA: Empowering Multilingual Agent for University Orientation with Hierarchical Retrieval](https://aclanthology.org/2025.naacl-demo.32/) (Tao et al., NAACL 2025)
ACL
- Mingxu Tao, Bowen Tang, Mingxuan Ma, Yining Zhang, Hourun Li, Feifan Wen, Ma Hao, and Jia Yang. 2025. ALOHA: Empowering Multilingual Agent for University Orientation with Hierarchical Retrieval. In Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (System Demonstrations), pages 383–392, Albuquerque, New Mexico. Association for Computational Linguistics.