@inproceedings{wang-etal-2025-trusteval,
title = "{TRUSTEVAL}: A Dynamic Evaluation Toolkit on Trustworthiness of Generative Foundation Models",
author = "Wang, Yanbo and
Ye, Jiayi and
Wu, Siyuan and
Gao, Chujie and
Huang, Yue and
Chen, Xiuying and
Zhao, Yue and
Zhang, Xiangliang",
editor = "Dziri, Nouha and
Ren, Sean (Xiang) and
Diao, Shizhe",
booktitle = "Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (System Demonstrations)",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.naacl-demo.8/",
doi = "10.18653/v1/2025.naacl-demo.8",
pages = "70--84",
ISBN = "979-8-89176-191-9",
abstract = "Ensuring the trustworthiness of Generative Foundation Models (GenFMs) is a pressing challenge as they gain widespread use. Existing evaluation toolkits are often limited in scope, dynamism, and flexibility. This paper introduces TRUSTEVAL, a dynamic and comprehensive toolkit designed for evaluating GenFMs across various dimensions. TRUSTEVAL supports both dynamic dataset generation and evaluation, offering advanced features including comprehensiveness, usability, and flexibility. TRUSTEVAL integrates diverse generative models, datasets, evaluation methods, metrics, inference efficiency enhancement, and evaluation report generation. Through case studies, we demonstrate TRUSTEVAL{'}s potential to advance the trustworthiness evaluation of GenFMs."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2025-trusteval">
<titleInfo>
<title>TRUSTEVAL: A Dynamic Evaluation Toolkit on Trustworthiness of Generative Foundation Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yanbo</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiayi</namePart>
<namePart type="family">Ye</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Siyuan</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chujie</namePart>
<namePart type="family">Gao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiuying</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiangliang</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (System Demonstrations)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nouha</namePart>
<namePart type="family">Dziri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sean</namePart>
<namePart type="given">(Xiang)</namePart>
<namePart type="family">Ren</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shizhe</namePart>
<namePart type="family">Diao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-191-9</identifier>
</relatedItem>
<abstract>Ensuring the trustworthiness of Generative Foundation Models (GenFMs) is a pressing challenge as they gain widespread use. Existing evaluation toolkits are often limited in scope, dynamism, and flexibility. This paper introduces TRUSTEVAL, a dynamic and comprehensive toolkit designed for evaluating GenFMs across various dimensions. TRUSTEVAL supports both dynamic dataset generation and evaluation, offering advanced features including comprehensiveness, usability, and flexibility. TRUSTEVAL integrates diverse generative models, datasets, evaluation methods, metrics, inference efficiency enhancement, and evaluation report generation. Through case studies, we demonstrate TRUSTEVAL’s potential to advance the trustworthiness evaluation of GenFMs.</abstract>
<identifier type="citekey">wang-etal-2025-trusteval</identifier>
<identifier type="doi">10.18653/v1/2025.naacl-demo.8</identifier>
<location>
<url>https://aclanthology.org/2025.naacl-demo.8/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>70</start>
<end>84</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T TRUSTEVAL: A Dynamic Evaluation Toolkit on Trustworthiness of Generative Foundation Models
%A Wang, Yanbo
%A Ye, Jiayi
%A Wu, Siyuan
%A Gao, Chujie
%A Huang, Yue
%A Chen, Xiuying
%A Zhao, Yue
%A Zhang, Xiangliang
%Y Dziri, Nouha
%Y Ren, Sean (Xiang)
%Y Diao, Shizhe
%S Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (System Demonstrations)
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-191-9
%F wang-etal-2025-trusteval
%X Ensuring the trustworthiness of Generative Foundation Models (GenFMs) is a pressing challenge as they gain widespread use. Existing evaluation toolkits are often limited in scope, dynamism, and flexibility. This paper introduces TRUSTEVAL, a dynamic and comprehensive toolkit designed for evaluating GenFMs across various dimensions. TRUSTEVAL supports both dynamic dataset generation and evaluation, offering advanced features including comprehensiveness, usability, and flexibility. TRUSTEVAL integrates diverse generative models, datasets, evaluation methods, metrics, inference efficiency enhancement, and evaluation report generation. Through case studies, we demonstrate TRUSTEVAL’s potential to advance the trustworthiness evaluation of GenFMs.
%R 10.18653/v1/2025.naacl-demo.8
%U https://aclanthology.org/2025.naacl-demo.8/
%U https://doi.org/10.18653/v1/2025.naacl-demo.8
%P 70-84
Markdown (Informal)
[TRUSTEVAL: A Dynamic Evaluation Toolkit on Trustworthiness of Generative Foundation Models](https://aclanthology.org/2025.naacl-demo.8/) (Wang et al., NAACL 2025)
ACL
- Yanbo Wang, Jiayi Ye, Siyuan Wu, Chujie Gao, Yue Huang, Xiuying Chen, Yue Zhao, and Xiangliang Zhang. 2025. TRUSTEVAL: A Dynamic Evaluation Toolkit on Trustworthiness of Generative Foundation Models. In Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (System Demonstrations), pages 70–84, Albuquerque, New Mexico. Association for Computational Linguistics.