@inproceedings{murtaza-etal-2025-implementing,
title = "Implementing Retrieval Augmented Generation Technique on Unstructured and Structured Data Sources in a Call Center of a Large Financial Institution",
author = "Murtaza, Syed Shariyar and
Nie, Yifan and
Avan, Elias and
Soni, Utkarsh and
Liao, Wanyu and
Carnegie, Adam and
Mathias, Cyril John and
Jiang, Junlin and
Wen, Eugene",
editor = "Chen, Weizhu and
Yang, Yi and
Kachuee, Mohammad and
Fu, Xue-Yong",
booktitle = "Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: Industry Track)",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.naacl-industry.48/",
doi = "10.18653/v1/2025.naacl-industry.48",
pages = "598--606",
ISBN = "979-8-89176-194-0",
abstract = "The retrieval-augmented generation (RAG) technique enables generative AI models to extract accurate facts from external unstructureddata sources. For structured data, RAG is further augmented by function calls to query databases. This paper presents an industrialcase study that implements RAG in a large financial institution{'}s call center. The study showcases experiences and architecture for ascalable RAG deployment. It also introduces enhancements to RAG for retrieving facts from structured data sources using data embeddings, achieving low latency and high reliability. Our optimized production application demonstratesan average response time of only 7.33 seconds. Additionally, the paper compares various open-source and closed-source models for answer generation in an industrial context."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="murtaza-etal-2025-implementing">
<titleInfo>
<title>Implementing Retrieval Augmented Generation Technique on Unstructured and Structured Data Sources in a Call Center of a Large Financial Institution</title>
</titleInfo>
<name type="personal">
<namePart type="given">Syed</namePart>
<namePart type="given">Shariyar</namePart>
<namePart type="family">Murtaza</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yifan</namePart>
<namePart type="family">Nie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elias</namePart>
<namePart type="family">Avan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Utkarsh</namePart>
<namePart type="family">Soni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wanyu</namePart>
<namePart type="family">Liao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Carnegie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cyril</namePart>
<namePart type="given">John</namePart>
<namePart type="family">Mathias</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junlin</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eugene</namePart>
<namePart type="family">Wen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: Industry Track)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Weizhu</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yi</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="family">Kachuee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xue-Yong</namePart>
<namePart type="family">Fu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-194-0</identifier>
</relatedItem>
<abstract>The retrieval-augmented generation (RAG) technique enables generative AI models to extract accurate facts from external unstructureddata sources. For structured data, RAG is further augmented by function calls to query databases. This paper presents an industrialcase study that implements RAG in a large financial institution’s call center. The study showcases experiences and architecture for ascalable RAG deployment. It also introduces enhancements to RAG for retrieving facts from structured data sources using data embeddings, achieving low latency and high reliability. Our optimized production application demonstratesan average response time of only 7.33 seconds. Additionally, the paper compares various open-source and closed-source models for answer generation in an industrial context.</abstract>
<identifier type="citekey">murtaza-etal-2025-implementing</identifier>
<identifier type="doi">10.18653/v1/2025.naacl-industry.48</identifier>
<location>
<url>https://aclanthology.org/2025.naacl-industry.48/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>598</start>
<end>606</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Implementing Retrieval Augmented Generation Technique on Unstructured and Structured Data Sources in a Call Center of a Large Financial Institution
%A Murtaza, Syed Shariyar
%A Nie, Yifan
%A Avan, Elias
%A Soni, Utkarsh
%A Liao, Wanyu
%A Carnegie, Adam
%A Mathias, Cyril John
%A Jiang, Junlin
%A Wen, Eugene
%Y Chen, Weizhu
%Y Yang, Yi
%Y Kachuee, Mohammad
%Y Fu, Xue-Yong
%S Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: Industry Track)
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-194-0
%F murtaza-etal-2025-implementing
%X The retrieval-augmented generation (RAG) technique enables generative AI models to extract accurate facts from external unstructureddata sources. For structured data, RAG is further augmented by function calls to query databases. This paper presents an industrialcase study that implements RAG in a large financial institution’s call center. The study showcases experiences and architecture for ascalable RAG deployment. It also introduces enhancements to RAG for retrieving facts from structured data sources using data embeddings, achieving low latency and high reliability. Our optimized production application demonstratesan average response time of only 7.33 seconds. Additionally, the paper compares various open-source and closed-source models for answer generation in an industrial context.
%R 10.18653/v1/2025.naacl-industry.48
%U https://aclanthology.org/2025.naacl-industry.48/
%U https://doi.org/10.18653/v1/2025.naacl-industry.48
%P 598-606
Markdown (Informal)
[Implementing Retrieval Augmented Generation Technique on Unstructured and Structured Data Sources in a Call Center of a Large Financial Institution](https://aclanthology.org/2025.naacl-industry.48/) (Murtaza et al., NAACL 2025)
ACL
- Syed Shariyar Murtaza, Yifan Nie, Elias Avan, Utkarsh Soni, Wanyu Liao, Adam Carnegie, Cyril John Mathias, Junlin Jiang, and Eugene Wen. 2025. Implementing Retrieval Augmented Generation Technique on Unstructured and Structured Data Sources in a Call Center of a Large Financial Institution. In Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: Industry Track), pages 598–606, Albuquerque, New Mexico. Association for Computational Linguistics.