@inproceedings{li-etal-2025-breaking,
title = "Breaking Down Power Barriers in On-Device Streaming {ASR}: Insights and Solutions",
author = "Li, Yang and
Shangguan, Yuan and
Wang, Yuhao and
Lai, Liangzhen and
Chang, Ernie and
Zhao, Changsheng and
Shi, Yangyang and
Chandra, Vikas",
editor = "Chen, Weizhu and
Yang, Yi and
Kachuee, Mohammad and
Fu, Xue-Yong",
booktitle = "Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: Industry Track)",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.naacl-industry.50/",
doi = "10.18653/v1/2025.naacl-industry.50",
pages = "616--626",
ISBN = "979-8-89176-194-0",
abstract = "Power consumption plays a crucial role in on-device streaming speech recognition, significantly influencing the user experience. This study explores how the configuration of weight parameters in speech recognition models affects their overall energy efficiency. We found that the influence of these parameters on power consumption varies depending on factors such as invocation frequency and memory allocation. Leveraging these insights, we propose design principles that enhance on-device speech recognition models by reducing power consumption with minimal impact on accuracy. Our approach, which adjusts model components based on their specific energy sensitivities, achieves up to 47{\%} lower energy usage while preserving comparable model accuracy and improving real-time performance compared to leading methods."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2025-breaking">
<titleInfo>
<title>Breaking Down Power Barriers in On-Device Streaming ASR: Insights and Solutions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuan</namePart>
<namePart type="family">Shangguan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuhao</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liangzhen</namePart>
<namePart type="family">Lai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ernie</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Changsheng</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yangyang</namePart>
<namePart type="family">Shi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vikas</namePart>
<namePart type="family">Chandra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: Industry Track)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Weizhu</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yi</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="family">Kachuee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xue-Yong</namePart>
<namePart type="family">Fu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-194-0</identifier>
</relatedItem>
<abstract>Power consumption plays a crucial role in on-device streaming speech recognition, significantly influencing the user experience. This study explores how the configuration of weight parameters in speech recognition models affects their overall energy efficiency. We found that the influence of these parameters on power consumption varies depending on factors such as invocation frequency and memory allocation. Leveraging these insights, we propose design principles that enhance on-device speech recognition models by reducing power consumption with minimal impact on accuracy. Our approach, which adjusts model components based on their specific energy sensitivities, achieves up to 47% lower energy usage while preserving comparable model accuracy and improving real-time performance compared to leading methods.</abstract>
<identifier type="citekey">li-etal-2025-breaking</identifier>
<identifier type="doi">10.18653/v1/2025.naacl-industry.50</identifier>
<location>
<url>https://aclanthology.org/2025.naacl-industry.50/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>616</start>
<end>626</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Breaking Down Power Barriers in On-Device Streaming ASR: Insights and Solutions
%A Li, Yang
%A Shangguan, Yuan
%A Wang, Yuhao
%A Lai, Liangzhen
%A Chang, Ernie
%A Zhao, Changsheng
%A Shi, Yangyang
%A Chandra, Vikas
%Y Chen, Weizhu
%Y Yang, Yi
%Y Kachuee, Mohammad
%Y Fu, Xue-Yong
%S Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: Industry Track)
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-194-0
%F li-etal-2025-breaking
%X Power consumption plays a crucial role in on-device streaming speech recognition, significantly influencing the user experience. This study explores how the configuration of weight parameters in speech recognition models affects their overall energy efficiency. We found that the influence of these parameters on power consumption varies depending on factors such as invocation frequency and memory allocation. Leveraging these insights, we propose design principles that enhance on-device speech recognition models by reducing power consumption with minimal impact on accuracy. Our approach, which adjusts model components based on their specific energy sensitivities, achieves up to 47% lower energy usage while preserving comparable model accuracy and improving real-time performance compared to leading methods.
%R 10.18653/v1/2025.naacl-industry.50
%U https://aclanthology.org/2025.naacl-industry.50/
%U https://doi.org/10.18653/v1/2025.naacl-industry.50
%P 616-626
Markdown (Informal)
[Breaking Down Power Barriers in On-Device Streaming ASR: Insights and Solutions](https://aclanthology.org/2025.naacl-industry.50/) (Li et al., NAACL 2025)
ACL
- Yang Li, Yuan Shangguan, Yuhao Wang, Liangzhen Lai, Ernie Chang, Changsheng Zhao, Yangyang Shi, and Vikas Chandra. 2025. Breaking Down Power Barriers in On-Device Streaming ASR: Insights and Solutions. In Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: Industry Track), pages 616–626, Albuquerque, New Mexico. Association for Computational Linguistics.