@inproceedings{tagawa-etal-2025-finding,
title = "Finding-Centric Structuring of {J}apanese Radiology Reports and Analysis of Performance Gaps for Multiple Facilities",
author = "Tagawa, Yuki and
Momoki, Yohei and
Nakano, Norihisa and
Ozaki, Ryota and
Taniguchi, Motoki and
Hori, Masatoshi and
Tomiyama, Noriyuki",
editor = "Chen, Weizhu and
Yang, Yi and
Kachuee, Mohammad and
Fu, Xue-Yong",
booktitle = "Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: Industry Track)",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.naacl-industry.7/",
doi = "10.18653/v1/2025.naacl-industry.7",
pages = "70--85",
ISBN = "979-8-89176-194-0",
abstract = "This study addresses two key challenges in structuring radiology reports: the lack of a practical structuring schema and datasets to evaluate model generalizability. To address these challenges, we propose a ``Finding-Centric Structuring,'' which organizes reports around individual findings, facilitating secondary use. We also construct JRadFCS, a large-scale dataset with annotated named entities (NEs) and relations, comprising 8,428 Japanese Computed Tomography (CT) reports from seven facilities, providing a comprehensive resource for evaluating model generalizability. Our experiments reveal performance gaps when applying models trained on single-facility reports to those from other facilities. We further analyze factors contributing to these gaps and demonstrate that augmenting the training set based on these performance-correlated factors can efficiently enhance model generalizability."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tagawa-etal-2025-finding">
<titleInfo>
<title>Finding-Centric Structuring of Japanese Radiology Reports and Analysis of Performance Gaps for Multiple Facilities</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuki</namePart>
<namePart type="family">Tagawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yohei</namePart>
<namePart type="family">Momoki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Norihisa</namePart>
<namePart type="family">Nakano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryota</namePart>
<namePart type="family">Ozaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Motoki</namePart>
<namePart type="family">Taniguchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Masatoshi</namePart>
<namePart type="family">Hori</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Noriyuki</namePart>
<namePart type="family">Tomiyama</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: Industry Track)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Weizhu</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yi</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="family">Kachuee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xue-Yong</namePart>
<namePart type="family">Fu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-194-0</identifier>
</relatedItem>
<abstract>This study addresses two key challenges in structuring radiology reports: the lack of a practical structuring schema and datasets to evaluate model generalizability. To address these challenges, we propose a “Finding-Centric Structuring,” which organizes reports around individual findings, facilitating secondary use. We also construct JRadFCS, a large-scale dataset with annotated named entities (NEs) and relations, comprising 8,428 Japanese Computed Tomography (CT) reports from seven facilities, providing a comprehensive resource for evaluating model generalizability. Our experiments reveal performance gaps when applying models trained on single-facility reports to those from other facilities. We further analyze factors contributing to these gaps and demonstrate that augmenting the training set based on these performance-correlated factors can efficiently enhance model generalizability.</abstract>
<identifier type="citekey">tagawa-etal-2025-finding</identifier>
<identifier type="doi">10.18653/v1/2025.naacl-industry.7</identifier>
<location>
<url>https://aclanthology.org/2025.naacl-industry.7/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>70</start>
<end>85</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Finding-Centric Structuring of Japanese Radiology Reports and Analysis of Performance Gaps for Multiple Facilities
%A Tagawa, Yuki
%A Momoki, Yohei
%A Nakano, Norihisa
%A Ozaki, Ryota
%A Taniguchi, Motoki
%A Hori, Masatoshi
%A Tomiyama, Noriyuki
%Y Chen, Weizhu
%Y Yang, Yi
%Y Kachuee, Mohammad
%Y Fu, Xue-Yong
%S Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: Industry Track)
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-194-0
%F tagawa-etal-2025-finding
%X This study addresses two key challenges in structuring radiology reports: the lack of a practical structuring schema and datasets to evaluate model generalizability. To address these challenges, we propose a “Finding-Centric Structuring,” which organizes reports around individual findings, facilitating secondary use. We also construct JRadFCS, a large-scale dataset with annotated named entities (NEs) and relations, comprising 8,428 Japanese Computed Tomography (CT) reports from seven facilities, providing a comprehensive resource for evaluating model generalizability. Our experiments reveal performance gaps when applying models trained on single-facility reports to those from other facilities. We further analyze factors contributing to these gaps and demonstrate that augmenting the training set based on these performance-correlated factors can efficiently enhance model generalizability.
%R 10.18653/v1/2025.naacl-industry.7
%U https://aclanthology.org/2025.naacl-industry.7/
%U https://doi.org/10.18653/v1/2025.naacl-industry.7
%P 70-85
Markdown (Informal)
[Finding-Centric Structuring of Japanese Radiology Reports and Analysis of Performance Gaps for Multiple Facilities](https://aclanthology.org/2025.naacl-industry.7/) (Tagawa et al., NAACL 2025)
ACL