@inproceedings{nwatu-etal-2025-uplifting,
title = "Uplifting Lower-Income Data: Strategies for Socioeconomic Perspective Shifts in Large Multi-modal Models",
author = "Nwatu, Joan and
Ignat, Oana and
Mihalcea, Rada",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.naacl-long.106/",
doi = "10.18653/v1/2025.naacl-long.106",
pages = "2127--2144",
ISBN = "979-8-89176-189-6",
abstract = "Recent work has demonstrated that the unequal representation of cultures and socioeconomic groups in training data leads to biased Large Multi-modal (LMM) models. To improve LMM model performance on underrepresented data, we propose and evaluate several prompting strategies using non-English, geographic, and socioeconomic attributes. We show that these geographic and socioeconomic integrated prompts favor retrieving topic appearances commonly found in data from low-income households across different countries leading to improved LMM model performance on lower-income data. Our analyses identify and highlight contexts where these strategies yield the most improvements."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nwatu-etal-2025-uplifting">
<titleInfo>
<title>Uplifting Lower-Income Data: Strategies for Socioeconomic Perspective Shifts in Large Multi-modal Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joan</namePart>
<namePart type="family">Nwatu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oana</namePart>
<namePart type="family">Ignat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rada</namePart>
<namePart type="family">Mihalcea</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-189-6</identifier>
</relatedItem>
<abstract>Recent work has demonstrated that the unequal representation of cultures and socioeconomic groups in training data leads to biased Large Multi-modal (LMM) models. To improve LMM model performance on underrepresented data, we propose and evaluate several prompting strategies using non-English, geographic, and socioeconomic attributes. We show that these geographic and socioeconomic integrated prompts favor retrieving topic appearances commonly found in data from low-income households across different countries leading to improved LMM model performance on lower-income data. Our analyses identify and highlight contexts where these strategies yield the most improvements.</abstract>
<identifier type="citekey">nwatu-etal-2025-uplifting</identifier>
<identifier type="doi">10.18653/v1/2025.naacl-long.106</identifier>
<location>
<url>https://aclanthology.org/2025.naacl-long.106/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>2127</start>
<end>2144</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Uplifting Lower-Income Data: Strategies for Socioeconomic Perspective Shifts in Large Multi-modal Models
%A Nwatu, Joan
%A Ignat, Oana
%A Mihalcea, Rada
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%S Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-189-6
%F nwatu-etal-2025-uplifting
%X Recent work has demonstrated that the unequal representation of cultures and socioeconomic groups in training data leads to biased Large Multi-modal (LMM) models. To improve LMM model performance on underrepresented data, we propose and evaluate several prompting strategies using non-English, geographic, and socioeconomic attributes. We show that these geographic and socioeconomic integrated prompts favor retrieving topic appearances commonly found in data from low-income households across different countries leading to improved LMM model performance on lower-income data. Our analyses identify and highlight contexts where these strategies yield the most improvements.
%R 10.18653/v1/2025.naacl-long.106
%U https://aclanthology.org/2025.naacl-long.106/
%U https://doi.org/10.18653/v1/2025.naacl-long.106
%P 2127-2144
Markdown (Informal)
[Uplifting Lower-Income Data: Strategies for Socioeconomic Perspective Shifts in Large Multi-modal Models](https://aclanthology.org/2025.naacl-long.106/) (Nwatu et al., NAACL 2025)
ACL