@inproceedings{du-etal-2025-sapient,
title = "{SAPIENT}: Mastering Multi-turn Conversational Recommendation with Strategic Planning and {M}onte {C}arlo Tree Search",
author = "Du, Hanwen and
Peng, Bo and
Ning, Xia",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.naacl-long.133/",
doi = "10.18653/v1/2025.naacl-long.133",
pages = "2629--2648",
ISBN = "979-8-89176-189-6",
abstract = "Conversational Recommender Systems (CRS) proactively engage users in interactive dialogues to elicit user preferences and provide personalized recommendations. Existing methods train Reinforcement Learning (RL)-based agent with greedy action selection or sampling strategy, and may suffer from suboptimal conversational planning. To address this, we present a novel Monte Carlo Tree Search (MCTS)-based CRS framework SAPIENT. SAPIENT consists of a conversational agent (S-agent) and a conversational planner (S-planner). S-planner builds a conversational search tree with MCTS based on the initial actions proposed by S-agent to find conversation plans. The best conversation plans from S-planner are used to guide the training of S-agent, creating a self-training loop where S-agent can iteratively improve its capability for conversational planning. Furthermore, we propose an efficient variant SAPIENT for trade-off between training efficiency and performance. Extensive experiments on four benchmark datasets validate the effectiveness of our approach, showing that SAPIENT outperforms the state-of-the-art baselines. Our code and data are accessible through https://github.com/ninglab/SAPIENT."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="du-etal-2025-sapient">
<titleInfo>
<title>SAPIENT: Mastering Multi-turn Conversational Recommendation with Strategic Planning and Monte Carlo Tree Search</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hanwen</namePart>
<namePart type="family">Du</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bo</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xia</namePart>
<namePart type="family">Ning</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-189-6</identifier>
</relatedItem>
<abstract>Conversational Recommender Systems (CRS) proactively engage users in interactive dialogues to elicit user preferences and provide personalized recommendations. Existing methods train Reinforcement Learning (RL)-based agent with greedy action selection or sampling strategy, and may suffer from suboptimal conversational planning. To address this, we present a novel Monte Carlo Tree Search (MCTS)-based CRS framework SAPIENT. SAPIENT consists of a conversational agent (S-agent) and a conversational planner (S-planner). S-planner builds a conversational search tree with MCTS based on the initial actions proposed by S-agent to find conversation plans. The best conversation plans from S-planner are used to guide the training of S-agent, creating a self-training loop where S-agent can iteratively improve its capability for conversational planning. Furthermore, we propose an efficient variant SAPIENT for trade-off between training efficiency and performance. Extensive experiments on four benchmark datasets validate the effectiveness of our approach, showing that SAPIENT outperforms the state-of-the-art baselines. Our code and data are accessible through https://github.com/ninglab/SAPIENT.</abstract>
<identifier type="citekey">du-etal-2025-sapient</identifier>
<identifier type="doi">10.18653/v1/2025.naacl-long.133</identifier>
<location>
<url>https://aclanthology.org/2025.naacl-long.133/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>2629</start>
<end>2648</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SAPIENT: Mastering Multi-turn Conversational Recommendation with Strategic Planning and Monte Carlo Tree Search
%A Du, Hanwen
%A Peng, Bo
%A Ning, Xia
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%S Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-189-6
%F du-etal-2025-sapient
%X Conversational Recommender Systems (CRS) proactively engage users in interactive dialogues to elicit user preferences and provide personalized recommendations. Existing methods train Reinforcement Learning (RL)-based agent with greedy action selection or sampling strategy, and may suffer from suboptimal conversational planning. To address this, we present a novel Monte Carlo Tree Search (MCTS)-based CRS framework SAPIENT. SAPIENT consists of a conversational agent (S-agent) and a conversational planner (S-planner). S-planner builds a conversational search tree with MCTS based on the initial actions proposed by S-agent to find conversation plans. The best conversation plans from S-planner are used to guide the training of S-agent, creating a self-training loop where S-agent can iteratively improve its capability for conversational planning. Furthermore, we propose an efficient variant SAPIENT for trade-off between training efficiency and performance. Extensive experiments on four benchmark datasets validate the effectiveness of our approach, showing that SAPIENT outperforms the state-of-the-art baselines. Our code and data are accessible through https://github.com/ninglab/SAPIENT.
%R 10.18653/v1/2025.naacl-long.133
%U https://aclanthology.org/2025.naacl-long.133/
%U https://doi.org/10.18653/v1/2025.naacl-long.133
%P 2629-2648
Markdown (Informal)
[SAPIENT: Mastering Multi-turn Conversational Recommendation with Strategic Planning and Monte Carlo Tree Search](https://aclanthology.org/2025.naacl-long.133/) (Du et al., NAACL 2025)
ACL