@inproceedings{hou-etal-2025-probabilistic,
title = "A Probabilistic Framework for {LLM} Hallucination Detection via Belief Tree Propagation",
author = "Hou, Bairu and
Zhang, Yang and
Andreas, Jacob and
Chang, Shiyu",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.naacl-long.158/",
doi = "10.18653/v1/2025.naacl-long.158",
pages = "3076--3099",
ISBN = "979-8-89176-189-6",
abstract = "We describe Belief Tree Propagation (BTProp), a probabilistic framework for LLM hallucination detection. To judge the truth of a statement, BTProp generates a belief tree by recursively expanding the initial statement into a set of logically related claims, then reasoning globally about the relationships between these claims. BTProp works by constructing a probabilistic model of the LM itself: it reasons jointly about logical relationships between claims and relationships between claim probabilities and LM factuality judgments via probabilistic inference in a ``hidden Markov tree''. This method improves over state-of-the-art baselines by 3{\%}-9{\%} (evaluated by AUROC and AUC-PR) on multiple hallucination detection benchmarks."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hou-etal-2025-probabilistic">
<titleInfo>
<title>A Probabilistic Framework for LLM Hallucination Detection via Belief Tree Propagation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bairu</namePart>
<namePart type="family">Hou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jacob</namePart>
<namePart type="family">Andreas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shiyu</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-189-6</identifier>
</relatedItem>
<abstract>We describe Belief Tree Propagation (BTProp), a probabilistic framework for LLM hallucination detection. To judge the truth of a statement, BTProp generates a belief tree by recursively expanding the initial statement into a set of logically related claims, then reasoning globally about the relationships between these claims. BTProp works by constructing a probabilistic model of the LM itself: it reasons jointly about logical relationships between claims and relationships between claim probabilities and LM factuality judgments via probabilistic inference in a “hidden Markov tree”. This method improves over state-of-the-art baselines by 3%-9% (evaluated by AUROC and AUC-PR) on multiple hallucination detection benchmarks.</abstract>
<identifier type="citekey">hou-etal-2025-probabilistic</identifier>
<identifier type="doi">10.18653/v1/2025.naacl-long.158</identifier>
<location>
<url>https://aclanthology.org/2025.naacl-long.158/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>3076</start>
<end>3099</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Probabilistic Framework for LLM Hallucination Detection via Belief Tree Propagation
%A Hou, Bairu
%A Zhang, Yang
%A Andreas, Jacob
%A Chang, Shiyu
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%S Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-189-6
%F hou-etal-2025-probabilistic
%X We describe Belief Tree Propagation (BTProp), a probabilistic framework for LLM hallucination detection. To judge the truth of a statement, BTProp generates a belief tree by recursively expanding the initial statement into a set of logically related claims, then reasoning globally about the relationships between these claims. BTProp works by constructing a probabilistic model of the LM itself: it reasons jointly about logical relationships between claims and relationships between claim probabilities and LM factuality judgments via probabilistic inference in a “hidden Markov tree”. This method improves over state-of-the-art baselines by 3%-9% (evaluated by AUROC and AUC-PR) on multiple hallucination detection benchmarks.
%R 10.18653/v1/2025.naacl-long.158
%U https://aclanthology.org/2025.naacl-long.158/
%U https://doi.org/10.18653/v1/2025.naacl-long.158
%P 3076-3099
Markdown (Informal)
[A Probabilistic Framework for LLM Hallucination Detection via Belief Tree Propagation](https://aclanthology.org/2025.naacl-long.158/) (Hou et al., NAACL 2025)
ACL