@inproceedings{acharya-etal-2025-benchmarking,
title = "Benchmarking and Building Zero-Shot {H}indi Retrieval Model with {H}indi-{BEIR} and {NLLB}-E5",
author = "Acharya, Arkadeep and
Murthy, Rudra and
Kumar, Vishwajeet and
Sen, Jaydeep",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.naacl-long.220/",
doi = "10.18653/v1/2025.naacl-long.220",
pages = "4328--4348",
ISBN = "979-8-89176-189-6",
abstract = "Given the large number of Hindi speakers worldwide, there is a pressing need for robust and efficient information retrieval systems for Hindi. Despite ongoing research, comprehensive benchmarks for evaluating retrieval models in Hindi are lacking. To address this gap, we introduce the Hindi-BEIR benchmark, comprising 15 datasets across seven distinct tasks. We evaluate state-of-the-art multilingual retrieval models on the Hindi-BEIR benchmark, identifying task and domain-specific challenges that impact Hindi retrieval performance. Building on the insights from these results, we introduce NLLB-E5, a multilingual retrieval model that leverages a zero-shot approach to support Hindi without the need for Hindi training data. We believe our contributions, including the release of the Hindi-BEIR benchmark and the NLLB-E5 model, will be a valuable resource for researchers and promote advancements in multilingual retrieval models."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="acharya-etal-2025-benchmarking">
<titleInfo>
<title>Benchmarking and Building Zero-Shot Hindi Retrieval Model with Hindi-BEIR and NLLB-E5</title>
</titleInfo>
<name type="personal">
<namePart type="given">Arkadeep</namePart>
<namePart type="family">Acharya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rudra</namePart>
<namePart type="family">Murthy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vishwajeet</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jaydeep</namePart>
<namePart type="family">Sen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-189-6</identifier>
</relatedItem>
<abstract>Given the large number of Hindi speakers worldwide, there is a pressing need for robust and efficient information retrieval systems for Hindi. Despite ongoing research, comprehensive benchmarks for evaluating retrieval models in Hindi are lacking. To address this gap, we introduce the Hindi-BEIR benchmark, comprising 15 datasets across seven distinct tasks. We evaluate state-of-the-art multilingual retrieval models on the Hindi-BEIR benchmark, identifying task and domain-specific challenges that impact Hindi retrieval performance. Building on the insights from these results, we introduce NLLB-E5, a multilingual retrieval model that leverages a zero-shot approach to support Hindi without the need for Hindi training data. We believe our contributions, including the release of the Hindi-BEIR benchmark and the NLLB-E5 model, will be a valuable resource for researchers and promote advancements in multilingual retrieval models.</abstract>
<identifier type="citekey">acharya-etal-2025-benchmarking</identifier>
<identifier type="doi">10.18653/v1/2025.naacl-long.220</identifier>
<location>
<url>https://aclanthology.org/2025.naacl-long.220/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>4328</start>
<end>4348</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Benchmarking and Building Zero-Shot Hindi Retrieval Model with Hindi-BEIR and NLLB-E5
%A Acharya, Arkadeep
%A Murthy, Rudra
%A Kumar, Vishwajeet
%A Sen, Jaydeep
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%S Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-189-6
%F acharya-etal-2025-benchmarking
%X Given the large number of Hindi speakers worldwide, there is a pressing need for robust and efficient information retrieval systems for Hindi. Despite ongoing research, comprehensive benchmarks for evaluating retrieval models in Hindi are lacking. To address this gap, we introduce the Hindi-BEIR benchmark, comprising 15 datasets across seven distinct tasks. We evaluate state-of-the-art multilingual retrieval models on the Hindi-BEIR benchmark, identifying task and domain-specific challenges that impact Hindi retrieval performance. Building on the insights from these results, we introduce NLLB-E5, a multilingual retrieval model that leverages a zero-shot approach to support Hindi without the need for Hindi training data. We believe our contributions, including the release of the Hindi-BEIR benchmark and the NLLB-E5 model, will be a valuable resource for researchers and promote advancements in multilingual retrieval models.
%R 10.18653/v1/2025.naacl-long.220
%U https://aclanthology.org/2025.naacl-long.220/
%U https://doi.org/10.18653/v1/2025.naacl-long.220
%P 4328-4348
Markdown (Informal)
[Benchmarking and Building Zero-Shot Hindi Retrieval Model with Hindi-BEIR and NLLB-E5](https://aclanthology.org/2025.naacl-long.220/) (Acharya et al., NAACL 2025)
ACL