@inproceedings{han-etal-2025-slim,
title = "{SLIM}: Let {LLM} Learn More and Forget Less with Soft {L}o{RA} and Identity Mixture",
author = "Han, Jiayi and
Du, Liang and
Du, Hongwei and
Zhou, Xiangguo and
Wu, Yiwen and
Zhang, Yuanfang and
Zheng, Weibo and
Han, Donghong",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.naacl-long.246/",
doi = "10.18653/v1/2025.naacl-long.246",
pages = "4792--4804",
ISBN = "979-8-89176-189-6",
abstract = "Despite the recent efforts from the NLP community, balancing the training budget, downstream performance, and general capabilities of large language models (LLM) remains a challenge in many applications. Training the entire model for downstream tasks is expensive, and could easily result in catastrophic forgetting. Parameter-efficient fine-tuning (PEFT) could reduce the training cost, but it still suffers from forgetting, and limits the learning on the downstream tasks. To address the aforementioned issues, we propose a novel mixture of expert (MoE) framework based on Soft LoRA and Identity Mixture (SLIM). SLIM allows dynamic routing between LoRA adapters and identity layers, thus enabling the bypass of LoRA adapters to suppress forgetting of general capacity. We adopt weight yielding with sliding clustering for better out-of-domain distinguish to enhance the routing. We also convert the mixture of LoRA adapters to the model merging formulation and introduce dynamic merging with its fast implementation for LoRA adapters to keep the general capabilities. Extensive experiments demonstrate that the proposed SLIM is comparable to the state-of-the-art PEFT approaches on the downstream tasks while achieving the leading performance in mitigating catastrophic forgetting. We plan to open-source the code upon publication."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="han-etal-2025-slim">
<titleInfo>
<title>SLIM: Let LLM Learn More and Forget Less with Soft LoRA and Identity Mixture</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jiayi</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liang</namePart>
<namePart type="family">Du</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongwei</namePart>
<namePart type="family">Du</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiangguo</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yiwen</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuanfang</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weibo</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Donghong</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-189-6</identifier>
</relatedItem>
<abstract>Despite the recent efforts from the NLP community, balancing the training budget, downstream performance, and general capabilities of large language models (LLM) remains a challenge in many applications. Training the entire model for downstream tasks is expensive, and could easily result in catastrophic forgetting. Parameter-efficient fine-tuning (PEFT) could reduce the training cost, but it still suffers from forgetting, and limits the learning on the downstream tasks. To address the aforementioned issues, we propose a novel mixture of expert (MoE) framework based on Soft LoRA and Identity Mixture (SLIM). SLIM allows dynamic routing between LoRA adapters and identity layers, thus enabling the bypass of LoRA adapters to suppress forgetting of general capacity. We adopt weight yielding with sliding clustering for better out-of-domain distinguish to enhance the routing. We also convert the mixture of LoRA adapters to the model merging formulation and introduce dynamic merging with its fast implementation for LoRA adapters to keep the general capabilities. Extensive experiments demonstrate that the proposed SLIM is comparable to the state-of-the-art PEFT approaches on the downstream tasks while achieving the leading performance in mitigating catastrophic forgetting. We plan to open-source the code upon publication.</abstract>
<identifier type="citekey">han-etal-2025-slim</identifier>
<identifier type="doi">10.18653/v1/2025.naacl-long.246</identifier>
<location>
<url>https://aclanthology.org/2025.naacl-long.246/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>4792</start>
<end>4804</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SLIM: Let LLM Learn More and Forget Less with Soft LoRA and Identity Mixture
%A Han, Jiayi
%A Du, Liang
%A Du, Hongwei
%A Zhou, Xiangguo
%A Wu, Yiwen
%A Zhang, Yuanfang
%A Zheng, Weibo
%A Han, Donghong
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%S Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-189-6
%F han-etal-2025-slim
%X Despite the recent efforts from the NLP community, balancing the training budget, downstream performance, and general capabilities of large language models (LLM) remains a challenge in many applications. Training the entire model for downstream tasks is expensive, and could easily result in catastrophic forgetting. Parameter-efficient fine-tuning (PEFT) could reduce the training cost, but it still suffers from forgetting, and limits the learning on the downstream tasks. To address the aforementioned issues, we propose a novel mixture of expert (MoE) framework based on Soft LoRA and Identity Mixture (SLIM). SLIM allows dynamic routing between LoRA adapters and identity layers, thus enabling the bypass of LoRA adapters to suppress forgetting of general capacity. We adopt weight yielding with sliding clustering for better out-of-domain distinguish to enhance the routing. We also convert the mixture of LoRA adapters to the model merging formulation and introduce dynamic merging with its fast implementation for LoRA adapters to keep the general capabilities. Extensive experiments demonstrate that the proposed SLIM is comparable to the state-of-the-art PEFT approaches on the downstream tasks while achieving the leading performance in mitigating catastrophic forgetting. We plan to open-source the code upon publication.
%R 10.18653/v1/2025.naacl-long.246
%U https://aclanthology.org/2025.naacl-long.246/
%U https://doi.org/10.18653/v1/2025.naacl-long.246
%P 4792-4804
Markdown (Informal)
[SLIM: Let LLM Learn More and Forget Less with Soft LoRA and Identity Mixture](https://aclanthology.org/2025.naacl-long.246/) (Han et al., NAACL 2025)
ACL
- Jiayi Han, Liang Du, Hongwei Du, Xiangguo Zhou, Yiwen Wu, Yuanfang Zhang, Weibo Zheng, and Donghong Han. 2025. SLIM: Let LLM Learn More and Forget Less with Soft LoRA and Identity Mixture. In Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 4792–4804, Albuquerque, New Mexico. Association for Computational Linguistics.