@inproceedings{moskovskiy-etal-2025-synthdetoxm,
title = "{S}ynth{D}etox{M}: {M}odern {LLM}s are Few-Shot Parallel Detoxification Data Annotators",
author = "Moskovskiy, Daniil and
Sushko, Nikita and
Pletenev, Sergey and
Tutubalina, Elena and
Panchenko, Alexander",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.naacl-long.294/",
doi = "10.18653/v1/2025.naacl-long.294",
pages = "5714--5733",
ISBN = "979-8-89176-189-6",
abstract = "Existing approaches to multilingual text detoxification are hampered by the scarcity of parallel multilingual datasets. In this work, we introduce a pipeline for the generation of multilingual parallel detoxification data. We also introduce SynthDetoxM, a manually collected and synthetically generated multilingual parallel text detoxification dataset comprising 16,000 high-quality detoxification sentence pairs across German, French, Spanish and Russian. The data was sourced from different toxicity evaluation datasets and then rewritten with nine modern open-source LLMs in few-shot setting. Our experiments demonstrate that models trained on the produced synthetic datasets have superior performance to those trained on the human-annotated MultiParaDetox dataset even in data limited setting. Models trained on SynthDetoxM outperform all evaluated LLMs in few-shot setting. We release our dataset and code to help further research in multilingual text detoxification."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="moskovskiy-etal-2025-synthdetoxm">
<titleInfo>
<title>SynthDetoxM: Modern LLMs are Few-Shot Parallel Detoxification Data Annotators</title>
</titleInfo>
<name type="personal">
<namePart type="given">Daniil</namePart>
<namePart type="family">Moskovskiy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikita</namePart>
<namePart type="family">Sushko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sergey</namePart>
<namePart type="family">Pletenev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elena</namePart>
<namePart type="family">Tutubalina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Panchenko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-189-6</identifier>
</relatedItem>
<abstract>Existing approaches to multilingual text detoxification are hampered by the scarcity of parallel multilingual datasets. In this work, we introduce a pipeline for the generation of multilingual parallel detoxification data. We also introduce SynthDetoxM, a manually collected and synthetically generated multilingual parallel text detoxification dataset comprising 16,000 high-quality detoxification sentence pairs across German, French, Spanish and Russian. The data was sourced from different toxicity evaluation datasets and then rewritten with nine modern open-source LLMs in few-shot setting. Our experiments demonstrate that models trained on the produced synthetic datasets have superior performance to those trained on the human-annotated MultiParaDetox dataset even in data limited setting. Models trained on SynthDetoxM outperform all evaluated LLMs in few-shot setting. We release our dataset and code to help further research in multilingual text detoxification.</abstract>
<identifier type="citekey">moskovskiy-etal-2025-synthdetoxm</identifier>
<identifier type="doi">10.18653/v1/2025.naacl-long.294</identifier>
<location>
<url>https://aclanthology.org/2025.naacl-long.294/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>5714</start>
<end>5733</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SynthDetoxM: Modern LLMs are Few-Shot Parallel Detoxification Data Annotators
%A Moskovskiy, Daniil
%A Sushko, Nikita
%A Pletenev, Sergey
%A Tutubalina, Elena
%A Panchenko, Alexander
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%S Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-189-6
%F moskovskiy-etal-2025-synthdetoxm
%X Existing approaches to multilingual text detoxification are hampered by the scarcity of parallel multilingual datasets. In this work, we introduce a pipeline for the generation of multilingual parallel detoxification data. We also introduce SynthDetoxM, a manually collected and synthetically generated multilingual parallel text detoxification dataset comprising 16,000 high-quality detoxification sentence pairs across German, French, Spanish and Russian. The data was sourced from different toxicity evaluation datasets and then rewritten with nine modern open-source LLMs in few-shot setting. Our experiments demonstrate that models trained on the produced synthetic datasets have superior performance to those trained on the human-annotated MultiParaDetox dataset even in data limited setting. Models trained on SynthDetoxM outperform all evaluated LLMs in few-shot setting. We release our dataset and code to help further research in multilingual text detoxification.
%R 10.18653/v1/2025.naacl-long.294
%U https://aclanthology.org/2025.naacl-long.294/
%U https://doi.org/10.18653/v1/2025.naacl-long.294
%P 5714-5733
Markdown (Informal)
[SynthDetoxM: Modern LLMs are Few-Shot Parallel Detoxification Data Annotators](https://aclanthology.org/2025.naacl-long.294/) (Moskovskiy et al., NAACL 2025)
ACL
- Daniil Moskovskiy, Nikita Sushko, Sergey Pletenev, Elena Tutubalina, and Alexander Panchenko. 2025. SynthDetoxM: Modern LLMs are Few-Shot Parallel Detoxification Data Annotators. In Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 5714–5733, Albuquerque, New Mexico. Association for Computational Linguistics.