@inproceedings{xie-etal-2025-rag,
title = "Do {RAG} Systems Cover What Matters? Evaluating and Optimizing Responses with Sub-Question Coverage",
author = "Xie, Kaige and
Laban, Philippe and
Choubey, Prafulla Kumar and
Xiong, Caiming and
Wu, Chien-Sheng",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.naacl-long.301/",
doi = "10.18653/v1/2025.naacl-long.301",
pages = "5836--5849",
ISBN = "979-8-89176-189-6",
abstract = "Evaluating retrieval-augmented generation (RAG) systems remains challenging, particularly for open-ended questions that lack definitive answers and require coverage of multiple sub-topics. In this paper, we introduce a novel evaluation framework based on sub-question coverage, which measures how well a RAG system addresses different facets of a question. We propose decomposing questions into sub-questions and classifying them into three types{---}core, background, and follow-up{---}to reflect their roles and importance. Using this categorization, we introduce a fine-grained evaluation protocol that provides insights into the retrieval and generation characteristics of RAG systems, including three commercial generative answer engines: You.com, Perplexity AI, and Bing Chat. Interestingly, we find that while all answer engines cover core sub-questions more often than background or follow-up ones, they still miss around 50{\%} of core sub-questions, revealing clear opportunities for improvement. Further, sub-question coverage metrics prove effective for ranking responses, achieving 82{\%} accuracy compared to human preference annotations. Lastly, we also demonstrate that leveraging core sub-questions enhances both retrieval and answer generation in a RAG system, resulting in a 74{\%} win rate over the baseline that lacks sub-questions."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xie-etal-2025-rag">
<titleInfo>
<title>Do RAG Systems Cover What Matters? Evaluating and Optimizing Responses with Sub-Question Coverage</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kaige</namePart>
<namePart type="family">Xie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Laban</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Prafulla</namePart>
<namePart type="given">Kumar</namePart>
<namePart type="family">Choubey</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Caiming</namePart>
<namePart type="family">Xiong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chien-Sheng</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-189-6</identifier>
</relatedItem>
<abstract>Evaluating retrieval-augmented generation (RAG) systems remains challenging, particularly for open-ended questions that lack definitive answers and require coverage of multiple sub-topics. In this paper, we introduce a novel evaluation framework based on sub-question coverage, which measures how well a RAG system addresses different facets of a question. We propose decomposing questions into sub-questions and classifying them into three types—core, background, and follow-up—to reflect their roles and importance. Using this categorization, we introduce a fine-grained evaluation protocol that provides insights into the retrieval and generation characteristics of RAG systems, including three commercial generative answer engines: You.com, Perplexity AI, and Bing Chat. Interestingly, we find that while all answer engines cover core sub-questions more often than background or follow-up ones, they still miss around 50% of core sub-questions, revealing clear opportunities for improvement. Further, sub-question coverage metrics prove effective for ranking responses, achieving 82% accuracy compared to human preference annotations. Lastly, we also demonstrate that leveraging core sub-questions enhances both retrieval and answer generation in a RAG system, resulting in a 74% win rate over the baseline that lacks sub-questions.</abstract>
<identifier type="citekey">xie-etal-2025-rag</identifier>
<identifier type="doi">10.18653/v1/2025.naacl-long.301</identifier>
<location>
<url>https://aclanthology.org/2025.naacl-long.301/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>5836</start>
<end>5849</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Do RAG Systems Cover What Matters? Evaluating and Optimizing Responses with Sub-Question Coverage
%A Xie, Kaige
%A Laban, Philippe
%A Choubey, Prafulla Kumar
%A Xiong, Caiming
%A Wu, Chien-Sheng
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%S Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-189-6
%F xie-etal-2025-rag
%X Evaluating retrieval-augmented generation (RAG) systems remains challenging, particularly for open-ended questions that lack definitive answers and require coverage of multiple sub-topics. In this paper, we introduce a novel evaluation framework based on sub-question coverage, which measures how well a RAG system addresses different facets of a question. We propose decomposing questions into sub-questions and classifying them into three types—core, background, and follow-up—to reflect their roles and importance. Using this categorization, we introduce a fine-grained evaluation protocol that provides insights into the retrieval and generation characteristics of RAG systems, including three commercial generative answer engines: You.com, Perplexity AI, and Bing Chat. Interestingly, we find that while all answer engines cover core sub-questions more often than background or follow-up ones, they still miss around 50% of core sub-questions, revealing clear opportunities for improvement. Further, sub-question coverage metrics prove effective for ranking responses, achieving 82% accuracy compared to human preference annotations. Lastly, we also demonstrate that leveraging core sub-questions enhances both retrieval and answer generation in a RAG system, resulting in a 74% win rate over the baseline that lacks sub-questions.
%R 10.18653/v1/2025.naacl-long.301
%U https://aclanthology.org/2025.naacl-long.301/
%U https://doi.org/10.18653/v1/2025.naacl-long.301
%P 5836-5849
Markdown (Informal)
[Do RAG Systems Cover What Matters? Evaluating and Optimizing Responses with Sub-Question Coverage](https://aclanthology.org/2025.naacl-long.301/) (Xie et al., NAACL 2025)
ACL