@inproceedings{jiang-etal-2025-jre,
title = "{JRE}-{L}: Journalist, Reader, and Editor {LLM}s in the Loop for Science Journalism for the General Audience",
author = "Jiang, Gongyao and
Shi, Xinran and
Luo, Qiong",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.naacl-long.335/",
doi = "10.18653/v1/2025.naacl-long.335",
pages = "6579--6594",
ISBN = "979-8-89176-189-6",
abstract = "Science journalism reports current scientific discoveries to non-specialists, aiming to enable public comprehension of the state of the art. This task is challenging as the audience often lacks specific knowledge about the presented research. We propose JRE-L, a framework that integrates three LLMs mimicking the writing-reading-feedback-revision loop. In JRE-L, one LLM acts as the journalist, another LLM as the general public reader, and the third LLM as an editor. The journalist{'}s writing is iteratively refined by feedback from the reader and suggestions from the editor. Our experiments demonstrate that by leveraging the collaboration of two 7B and one 1.8B open-source LLMs, we can generate articles that are more accessible than those generated by existing methods, including prompting single advanced models such as GPT-4 and other LLM-collaboration strategies. Our code is publicly available at github.com/Zzoay/JRE-L."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jiang-etal-2025-jre">
<titleInfo>
<title>JRE-L: Journalist, Reader, and Editor LLMs in the Loop for Science Journalism for the General Audience</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gongyao</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xinran</namePart>
<namePart type="family">Shi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qiong</namePart>
<namePart type="family">Luo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-189-6</identifier>
</relatedItem>
<abstract>Science journalism reports current scientific discoveries to non-specialists, aiming to enable public comprehension of the state of the art. This task is challenging as the audience often lacks specific knowledge about the presented research. We propose JRE-L, a framework that integrates three LLMs mimicking the writing-reading-feedback-revision loop. In JRE-L, one LLM acts as the journalist, another LLM as the general public reader, and the third LLM as an editor. The journalist’s writing is iteratively refined by feedback from the reader and suggestions from the editor. Our experiments demonstrate that by leveraging the collaboration of two 7B and one 1.8B open-source LLMs, we can generate articles that are more accessible than those generated by existing methods, including prompting single advanced models such as GPT-4 and other LLM-collaboration strategies. Our code is publicly available at github.com/Zzoay/JRE-L.</abstract>
<identifier type="citekey">jiang-etal-2025-jre</identifier>
<identifier type="doi">10.18653/v1/2025.naacl-long.335</identifier>
<location>
<url>https://aclanthology.org/2025.naacl-long.335/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>6579</start>
<end>6594</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T JRE-L: Journalist, Reader, and Editor LLMs in the Loop for Science Journalism for the General Audience
%A Jiang, Gongyao
%A Shi, Xinran
%A Luo, Qiong
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%S Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-189-6
%F jiang-etal-2025-jre
%X Science journalism reports current scientific discoveries to non-specialists, aiming to enable public comprehension of the state of the art. This task is challenging as the audience often lacks specific knowledge about the presented research. We propose JRE-L, a framework that integrates three LLMs mimicking the writing-reading-feedback-revision loop. In JRE-L, one LLM acts as the journalist, another LLM as the general public reader, and the third LLM as an editor. The journalist’s writing is iteratively refined by feedback from the reader and suggestions from the editor. Our experiments demonstrate that by leveraging the collaboration of two 7B and one 1.8B open-source LLMs, we can generate articles that are more accessible than those generated by existing methods, including prompting single advanced models such as GPT-4 and other LLM-collaboration strategies. Our code is publicly available at github.com/Zzoay/JRE-L.
%R 10.18653/v1/2025.naacl-long.335
%U https://aclanthology.org/2025.naacl-long.335/
%U https://doi.org/10.18653/v1/2025.naacl-long.335
%P 6579-6594
Markdown (Informal)
[JRE-L: Journalist, Reader, and Editor LLMs in the Loop for Science Journalism for the General Audience](https://aclanthology.org/2025.naacl-long.335/) (Jiang et al., NAACL 2025)
ACL