@inproceedings{baral-etal-2025-drawedumath,
title = "{D}raw{E}du{M}ath: Evaluating Vision Language Models with Expert-Annotated Students' Hand-Drawn Math Images",
author = "Baral, Sami and
Lucy, Li and
Knight, Ryan and
Ng, Alice and
Soldaini, Luca and
Heffernan, Neil and
Lo, Kyle",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.naacl-long.352/",
doi = "10.18653/v1/2025.naacl-long.352",
pages = "6902--6920",
ISBN = "979-8-89176-189-6",
abstract = "In real-world settings, vision language models (VLMs) should robustly handle naturalistic, noisy visual content as well as domain-specific language and concepts. For example, K-12 educators using digital learning platforms may need to examine and provide feedback across many images of students' math work. To assess the potential of VLMs to support educators in settings like this one, we introduce DrawEduMath, an English-language dataset of 2,030 images of students' handwritten responses to K-12 math problems. Teachers provided detailed annotations, including free-form descriptions of each image and 11,661 question-answer (QA) pairs. These annotations capture a wealth of pedagogical insights, ranging from students' problem-solving strategies to the composition of their drawings, diagrams, and writing. We evaluate VLMs on teachers' QA pairs, as well as 44,362 synthetic QA pairs derived from teachers' descriptions using language models (LMs). We show that even state-of-the-art VLMs leave much room for improvement on DrawEduMath questions. We also find that synthetic QAs, though imperfect, can yield similar model rankings as teacher-written QAs. We release DrawEduMath to support the evaluation of VLMs' abilities to reason mathematically over images gathered with educational contexts in mind."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="baral-etal-2025-drawedumath">
<titleInfo>
<title>DrawEduMath: Evaluating Vision Language Models with Expert-Annotated Students’ Hand-Drawn Math Images</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sami</namePart>
<namePart type="family">Baral</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Li</namePart>
<namePart type="family">Lucy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Knight</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alice</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luca</namePart>
<namePart type="family">Soldaini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Neil</namePart>
<namePart type="family">Heffernan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyle</namePart>
<namePart type="family">Lo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-189-6</identifier>
</relatedItem>
<abstract>In real-world settings, vision language models (VLMs) should robustly handle naturalistic, noisy visual content as well as domain-specific language and concepts. For example, K-12 educators using digital learning platforms may need to examine and provide feedback across many images of students’ math work. To assess the potential of VLMs to support educators in settings like this one, we introduce DrawEduMath, an English-language dataset of 2,030 images of students’ handwritten responses to K-12 math problems. Teachers provided detailed annotations, including free-form descriptions of each image and 11,661 question-answer (QA) pairs. These annotations capture a wealth of pedagogical insights, ranging from students’ problem-solving strategies to the composition of their drawings, diagrams, and writing. We evaluate VLMs on teachers’ QA pairs, as well as 44,362 synthetic QA pairs derived from teachers’ descriptions using language models (LMs). We show that even state-of-the-art VLMs leave much room for improvement on DrawEduMath questions. We also find that synthetic QAs, though imperfect, can yield similar model rankings as teacher-written QAs. We release DrawEduMath to support the evaluation of VLMs’ abilities to reason mathematically over images gathered with educational contexts in mind.</abstract>
<identifier type="citekey">baral-etal-2025-drawedumath</identifier>
<identifier type="doi">10.18653/v1/2025.naacl-long.352</identifier>
<location>
<url>https://aclanthology.org/2025.naacl-long.352/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>6902</start>
<end>6920</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T DrawEduMath: Evaluating Vision Language Models with Expert-Annotated Students’ Hand-Drawn Math Images
%A Baral, Sami
%A Lucy, Li
%A Knight, Ryan
%A Ng, Alice
%A Soldaini, Luca
%A Heffernan, Neil
%A Lo, Kyle
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%S Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-189-6
%F baral-etal-2025-drawedumath
%X In real-world settings, vision language models (VLMs) should robustly handle naturalistic, noisy visual content as well as domain-specific language and concepts. For example, K-12 educators using digital learning platforms may need to examine and provide feedback across many images of students’ math work. To assess the potential of VLMs to support educators in settings like this one, we introduce DrawEduMath, an English-language dataset of 2,030 images of students’ handwritten responses to K-12 math problems. Teachers provided detailed annotations, including free-form descriptions of each image and 11,661 question-answer (QA) pairs. These annotations capture a wealth of pedagogical insights, ranging from students’ problem-solving strategies to the composition of their drawings, diagrams, and writing. We evaluate VLMs on teachers’ QA pairs, as well as 44,362 synthetic QA pairs derived from teachers’ descriptions using language models (LMs). We show that even state-of-the-art VLMs leave much room for improvement on DrawEduMath questions. We also find that synthetic QAs, though imperfect, can yield similar model rankings as teacher-written QAs. We release DrawEduMath to support the evaluation of VLMs’ abilities to reason mathematically over images gathered with educational contexts in mind.
%R 10.18653/v1/2025.naacl-long.352
%U https://aclanthology.org/2025.naacl-long.352/
%U https://doi.org/10.18653/v1/2025.naacl-long.352
%P 6902-6920
Markdown (Informal)
[DrawEduMath: Evaluating Vision Language Models with Expert-Annotated Students’ Hand-Drawn Math Images](https://aclanthology.org/2025.naacl-long.352/) (Baral et al., NAACL 2025)
ACL