@inproceedings{yang-etal-2025-selfgoal,
title = "{SELFGOAL}: Your Language Agents Already Know How to Achieve High-level Goals",
author = "Yang, Ruihan and
Chen, Jiangjie and
Zhang, Yikai and
Yuan, Siyu and
Chen, Aili and
Richardson, Kyle and
Xiao, Yanghua and
Yang, Deqing",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.naacl-long.36/",
doi = "10.18653/v1/2025.naacl-long.36",
pages = "799--819",
ISBN = "979-8-89176-189-6",
abstract = "Language agents powered by large language models (LLMs) are increasingly valuable as decision-making tools in domains such as gaming and programming. However, these agents often face challenges in achieving high-level goals without detailed instructions and in adapting to environments where feedback is delayed. In this paper, we present SELFGOAL, a novel automatic approach designed to enhance agents' capabilities to achieve high-level goals with limited human prior and environmental feedback. The core concept of SELFGOAL involves adaptively breaking down a high-level goal into a tree structure of more practical subgoals during the interaction with environments while identifying the most useful subgoals and progressively updating this structure. Experimental results demonstrate that SELFGOAL significantly enhances the performance of language agents across various tasks, including competitive, cooperative, and deferred feedback environments."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yang-etal-2025-selfgoal">
<titleInfo>
<title>SELFGOAL: Your Language Agents Already Know How to Achieve High-level Goals</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruihan</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiangjie</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yikai</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Siyu</namePart>
<namePart type="family">Yuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aili</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyle</namePart>
<namePart type="family">Richardson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yanghua</namePart>
<namePart type="family">Xiao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Deqing</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-189-6</identifier>
</relatedItem>
<abstract>Language agents powered by large language models (LLMs) are increasingly valuable as decision-making tools in domains such as gaming and programming. However, these agents often face challenges in achieving high-level goals without detailed instructions and in adapting to environments where feedback is delayed. In this paper, we present SELFGOAL, a novel automatic approach designed to enhance agents’ capabilities to achieve high-level goals with limited human prior and environmental feedback. The core concept of SELFGOAL involves adaptively breaking down a high-level goal into a tree structure of more practical subgoals during the interaction with environments while identifying the most useful subgoals and progressively updating this structure. Experimental results demonstrate that SELFGOAL significantly enhances the performance of language agents across various tasks, including competitive, cooperative, and deferred feedback environments.</abstract>
<identifier type="citekey">yang-etal-2025-selfgoal</identifier>
<identifier type="doi">10.18653/v1/2025.naacl-long.36</identifier>
<location>
<url>https://aclanthology.org/2025.naacl-long.36/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>799</start>
<end>819</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SELFGOAL: Your Language Agents Already Know How to Achieve High-level Goals
%A Yang, Ruihan
%A Chen, Jiangjie
%A Zhang, Yikai
%A Yuan, Siyu
%A Chen, Aili
%A Richardson, Kyle
%A Xiao, Yanghua
%A Yang, Deqing
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%S Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-189-6
%F yang-etal-2025-selfgoal
%X Language agents powered by large language models (LLMs) are increasingly valuable as decision-making tools in domains such as gaming and programming. However, these agents often face challenges in achieving high-level goals without detailed instructions and in adapting to environments where feedback is delayed. In this paper, we present SELFGOAL, a novel automatic approach designed to enhance agents’ capabilities to achieve high-level goals with limited human prior and environmental feedback. The core concept of SELFGOAL involves adaptively breaking down a high-level goal into a tree structure of more practical subgoals during the interaction with environments while identifying the most useful subgoals and progressively updating this structure. Experimental results demonstrate that SELFGOAL significantly enhances the performance of language agents across various tasks, including competitive, cooperative, and deferred feedback environments.
%R 10.18653/v1/2025.naacl-long.36
%U https://aclanthology.org/2025.naacl-long.36/
%U https://doi.org/10.18653/v1/2025.naacl-long.36
%P 799-819
Markdown (Informal)
[SELFGOAL: Your Language Agents Already Know How to Achieve High-level Goals](https://aclanthology.org/2025.naacl-long.36/) (Yang et al., NAACL 2025)
ACL
- Ruihan Yang, Jiangjie Chen, Yikai Zhang, Siyu Yuan, Aili Chen, Kyle Richardson, Yanghua Xiao, and Deqing Yang. 2025. SELFGOAL: Your Language Agents Already Know How to Achieve High-level Goals. In Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 799–819, Albuquerque, New Mexico. Association for Computational Linguistics.