@inproceedings{zhang-etal-2025-llama,
title = "{LL}a{MA}-Berry: Pairwise Optimization for Olympiad-level Mathematical Reasoning via O1-like {M}onte {C}arlo Tree Search",
author = "Zhang, Di and
Wu, Jianbo and
Lei, Jingdi and
Che, Tong and
Li, Jiatong and
Xie, Tong and
Huang, Xiaoshui and
Zhang, Shufei and
Pavone, Marco and
Li, Yuqiang and
Ouyang, Wanli and
Zhou, Dongzhan",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.naacl-long.375/",
doi = "10.18653/v1/2025.naacl-long.375",
pages = "7315--7337",
ISBN = "979-8-89176-189-6",
abstract = "This paper presents LLaMA-Berry, an advanced mathematical reasoning framework to enhance the problem-solving ability of large language models (LLMs). The framework combines Monte Carlo Tree Search with Self-Refine (SR-MCTS) to optimize the reasoning paths and utilizes a pairwise reward model to evaluate different paths globally. By leveraging the self-critique and rewriting capabilities of LLMs, our SR-MCTS overcomes the inefficiencies and limitations of conventional step-wise and greedy search algorithms, enabling a more efficient exploration of solution spaces. To guide the search process, we propose the Pairwise Preference Reward Model (PPRM), which predicts pairwise preferences between solutions through instruction-following capabilities trained by Reinforcement Learning from Human Feedback (RLHF). Finally, the Enhanced Borda Count (EBC) method is adopted to synthesize pairwise preferences into global quantile scores for evaluations. This approach mitigates the challenges of scoring variability and non-independent distributions in mathematical reasoning tasks. The framework has been tested on general and advanced benchmarks, showing superior search efficiency and performance compared to existing open-source and closed-source methods, particularly in complex Olympiad-level benchmarks, including AIME24 and AMC23."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2025-llama">
<titleInfo>
<title>LLaMA-Berry: Pairwise Optimization for Olympiad-level Mathematical Reasoning via O1-like Monte Carlo Tree Search</title>
</titleInfo>
<name type="personal">
<namePart type="given">Di</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jianbo</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jingdi</namePart>
<namePart type="family">Lei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tong</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiatong</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tong</namePart>
<namePart type="family">Xie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaoshui</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shufei</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Pavone</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuqiang</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wanli</namePart>
<namePart type="family">Ouyang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dongzhan</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-189-6</identifier>
</relatedItem>
<abstract>This paper presents LLaMA-Berry, an advanced mathematical reasoning framework to enhance the problem-solving ability of large language models (LLMs). The framework combines Monte Carlo Tree Search with Self-Refine (SR-MCTS) to optimize the reasoning paths and utilizes a pairwise reward model to evaluate different paths globally. By leveraging the self-critique and rewriting capabilities of LLMs, our SR-MCTS overcomes the inefficiencies and limitations of conventional step-wise and greedy search algorithms, enabling a more efficient exploration of solution spaces. To guide the search process, we propose the Pairwise Preference Reward Model (PPRM), which predicts pairwise preferences between solutions through instruction-following capabilities trained by Reinforcement Learning from Human Feedback (RLHF). Finally, the Enhanced Borda Count (EBC) method is adopted to synthesize pairwise preferences into global quantile scores for evaluations. This approach mitigates the challenges of scoring variability and non-independent distributions in mathematical reasoning tasks. The framework has been tested on general and advanced benchmarks, showing superior search efficiency and performance compared to existing open-source and closed-source methods, particularly in complex Olympiad-level benchmarks, including AIME24 and AMC23.</abstract>
<identifier type="citekey">zhang-etal-2025-llama</identifier>
<identifier type="doi">10.18653/v1/2025.naacl-long.375</identifier>
<location>
<url>https://aclanthology.org/2025.naacl-long.375/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>7315</start>
<end>7337</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T LLaMA-Berry: Pairwise Optimization for Olympiad-level Mathematical Reasoning via O1-like Monte Carlo Tree Search
%A Zhang, Di
%A Wu, Jianbo
%A Lei, Jingdi
%A Che, Tong
%A Li, Jiatong
%A Xie, Tong
%A Huang, Xiaoshui
%A Zhang, Shufei
%A Pavone, Marco
%A Li, Yuqiang
%A Ouyang, Wanli
%A Zhou, Dongzhan
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%S Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-189-6
%F zhang-etal-2025-llama
%X This paper presents LLaMA-Berry, an advanced mathematical reasoning framework to enhance the problem-solving ability of large language models (LLMs). The framework combines Monte Carlo Tree Search with Self-Refine (SR-MCTS) to optimize the reasoning paths and utilizes a pairwise reward model to evaluate different paths globally. By leveraging the self-critique and rewriting capabilities of LLMs, our SR-MCTS overcomes the inefficiencies and limitations of conventional step-wise and greedy search algorithms, enabling a more efficient exploration of solution spaces. To guide the search process, we propose the Pairwise Preference Reward Model (PPRM), which predicts pairwise preferences between solutions through instruction-following capabilities trained by Reinforcement Learning from Human Feedback (RLHF). Finally, the Enhanced Borda Count (EBC) method is adopted to synthesize pairwise preferences into global quantile scores for evaluations. This approach mitigates the challenges of scoring variability and non-independent distributions in mathematical reasoning tasks. The framework has been tested on general and advanced benchmarks, showing superior search efficiency and performance compared to existing open-source and closed-source methods, particularly in complex Olympiad-level benchmarks, including AIME24 and AMC23.
%R 10.18653/v1/2025.naacl-long.375
%U https://aclanthology.org/2025.naacl-long.375/
%U https://doi.org/10.18653/v1/2025.naacl-long.375
%P 7315-7337
Markdown (Informal)
[LLaMA-Berry: Pairwise Optimization for Olympiad-level Mathematical Reasoning via O1-like Monte Carlo Tree Search](https://aclanthology.org/2025.naacl-long.375/) (Zhang et al., NAACL 2025)
ACL
- Di Zhang, Jianbo Wu, Jingdi Lei, Tong Che, Jiatong Li, Tong Xie, Xiaoshui Huang, Shufei Zhang, Marco Pavone, Yuqiang Li, Wanli Ouyang, and Dongzhan Zhou. 2025. LLaMA-Berry: Pairwise Optimization for Olympiad-level Mathematical Reasoning via O1-like Monte Carlo Tree Search. In Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 7315–7337, Albuquerque, New Mexico. Association for Computational Linguistics.