@inproceedings{lee-etal-2025-corg,
title = "{CORG}: Generating Answers from Complex, Interrelated Contexts",
author = "Lee, Hyunji and
Dernoncourt, Franck and
Bui, Trung and
Yoon, Seunghyun",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.naacl-long.428/",
doi = "10.18653/v1/2025.naacl-long.428",
pages = "8443--8460",
ISBN = "979-8-89176-189-6",
abstract = "In a real-world corpus, knowledge frequently recurs across documents but often contains inconsistencies due to ambiguous naming, outdated information, or errors, leading to complex interrelationships between contexts. Previous research has shown that language models struggle with these complexities, typically focusing on single factors in isolation. We classify these relationships into four types: distracting, ambiguous, counterfactual, and duplicated. Our analysis reveals that no single approach effectively addresses all these interrelationships simultaneously. Therefore, we introduce Context Organizer (COrg), a framework that organizes multiple contexts into independently processed groups. This design allows the model to efficiently find all relevant answers while ensuring disambiguation. COrg consists of three key components: a graph constructor, a reranker, and an aggregator. Our results demonstrate that COrg balances performance and efficiency effectively, outperforming existing grouping methods and achieving comparable results to more computationally intensive, single-context approaches."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lee-etal-2025-corg">
<titleInfo>
<title>CORG: Generating Answers from Complex, Interrelated Contexts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hyunji</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Franck</namePart>
<namePart type="family">Dernoncourt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trung</namePart>
<namePart type="family">Bui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seunghyun</namePart>
<namePart type="family">Yoon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-189-6</identifier>
</relatedItem>
<abstract>In a real-world corpus, knowledge frequently recurs across documents but often contains inconsistencies due to ambiguous naming, outdated information, or errors, leading to complex interrelationships between contexts. Previous research has shown that language models struggle with these complexities, typically focusing on single factors in isolation. We classify these relationships into four types: distracting, ambiguous, counterfactual, and duplicated. Our analysis reveals that no single approach effectively addresses all these interrelationships simultaneously. Therefore, we introduce Context Organizer (COrg), a framework that organizes multiple contexts into independently processed groups. This design allows the model to efficiently find all relevant answers while ensuring disambiguation. COrg consists of three key components: a graph constructor, a reranker, and an aggregator. Our results demonstrate that COrg balances performance and efficiency effectively, outperforming existing grouping methods and achieving comparable results to more computationally intensive, single-context approaches.</abstract>
<identifier type="citekey">lee-etal-2025-corg</identifier>
<identifier type="doi">10.18653/v1/2025.naacl-long.428</identifier>
<location>
<url>https://aclanthology.org/2025.naacl-long.428/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>8443</start>
<end>8460</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CORG: Generating Answers from Complex, Interrelated Contexts
%A Lee, Hyunji
%A Dernoncourt, Franck
%A Bui, Trung
%A Yoon, Seunghyun
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%S Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-189-6
%F lee-etal-2025-corg
%X In a real-world corpus, knowledge frequently recurs across documents but often contains inconsistencies due to ambiguous naming, outdated information, or errors, leading to complex interrelationships between contexts. Previous research has shown that language models struggle with these complexities, typically focusing on single factors in isolation. We classify these relationships into four types: distracting, ambiguous, counterfactual, and duplicated. Our analysis reveals that no single approach effectively addresses all these interrelationships simultaneously. Therefore, we introduce Context Organizer (COrg), a framework that organizes multiple contexts into independently processed groups. This design allows the model to efficiently find all relevant answers while ensuring disambiguation. COrg consists of three key components: a graph constructor, a reranker, and an aggregator. Our results demonstrate that COrg balances performance and efficiency effectively, outperforming existing grouping methods and achieving comparable results to more computationally intensive, single-context approaches.
%R 10.18653/v1/2025.naacl-long.428
%U https://aclanthology.org/2025.naacl-long.428/
%U https://doi.org/10.18653/v1/2025.naacl-long.428
%P 8443-8460
Markdown (Informal)
[CORG: Generating Answers from Complex, Interrelated Contexts](https://aclanthology.org/2025.naacl-long.428/) (Lee et al., NAACL 2025)
ACL
- Hyunji Lee, Franck Dernoncourt, Trung Bui, and Seunghyun Yoon. 2025. CORG: Generating Answers from Complex, Interrelated Contexts. In Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 8443–8460, Albuquerque, New Mexico. Association for Computational Linguistics.