@inproceedings{huang-etal-2025-moce,
title = "{M}o{CE}: Adaptive Mixture of Contextualization Experts for Byte-based Neural Machine Translation",
author = "Huang, Langlin and
Bu, Mengyu and
Feng, Yang",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.naacl-long.47/",
pages = "1011--1028",
ISBN = "979-8-89176-189-6",
abstract = "Byte-based machine translation systems have shown significant potential in massively multilingual settings. Unicode encoding, which maps each character to specific byte(s), eliminates the emergence of unknown words, even in new languages, enabling broad language scalability. However, byte-level tokenization results in sequences that are hard to interpret due to limited semantic information per byte. Local contextualization has proven effective in assigning initial semantics to tokens, improving sentence comprehension. Nevertheless, variations in encoding rules across languages necessitate an adaptive approach for effective contextualization. To this end, we propose Adaptive MultiScale-Headed Attention (Ada-MSHA), adaptively selecting and mixing attention heads, which are treated as contextualization experts. This enhances the flexibility of contextualization scales and improves the potential to discover a better strategy than previous methods. Experiment results show that our method outperforms existing methods without extensive manual adjustment of hyper-parameters and surpasses subword-based models with fewer parameters in Ted-59 dataset."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="huang-etal-2025-moce">
<titleInfo>
<title>MoCE: Adaptive Mixture of Contextualization Experts for Byte-based Neural Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Langlin</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mengyu</namePart>
<namePart type="family">Bu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Feng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-189-6</identifier>
</relatedItem>
<abstract>Byte-based machine translation systems have shown significant potential in massively multilingual settings. Unicode encoding, which maps each character to specific byte(s), eliminates the emergence of unknown words, even in new languages, enabling broad language scalability. However, byte-level tokenization results in sequences that are hard to interpret due to limited semantic information per byte. Local contextualization has proven effective in assigning initial semantics to tokens, improving sentence comprehension. Nevertheless, variations in encoding rules across languages necessitate an adaptive approach for effective contextualization. To this end, we propose Adaptive MultiScale-Headed Attention (Ada-MSHA), adaptively selecting and mixing attention heads, which are treated as contextualization experts. This enhances the flexibility of contextualization scales and improves the potential to discover a better strategy than previous methods. Experiment results show that our method outperforms existing methods without extensive manual adjustment of hyper-parameters and surpasses subword-based models with fewer parameters in Ted-59 dataset.</abstract>
<identifier type="citekey">huang-etal-2025-moce</identifier>
<location>
<url>https://aclanthology.org/2025.naacl-long.47/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>1011</start>
<end>1028</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MoCE: Adaptive Mixture of Contextualization Experts for Byte-based Neural Machine Translation
%A Huang, Langlin
%A Bu, Mengyu
%A Feng, Yang
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%S Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-189-6
%F huang-etal-2025-moce
%X Byte-based machine translation systems have shown significant potential in massively multilingual settings. Unicode encoding, which maps each character to specific byte(s), eliminates the emergence of unknown words, even in new languages, enabling broad language scalability. However, byte-level tokenization results in sequences that are hard to interpret due to limited semantic information per byte. Local contextualization has proven effective in assigning initial semantics to tokens, improving sentence comprehension. Nevertheless, variations in encoding rules across languages necessitate an adaptive approach for effective contextualization. To this end, we propose Adaptive MultiScale-Headed Attention (Ada-MSHA), adaptively selecting and mixing attention heads, which are treated as contextualization experts. This enhances the flexibility of contextualization scales and improves the potential to discover a better strategy than previous methods. Experiment results show that our method outperforms existing methods without extensive manual adjustment of hyper-parameters and surpasses subword-based models with fewer parameters in Ted-59 dataset.
%U https://aclanthology.org/2025.naacl-long.47/
%P 1011-1028
Markdown (Informal)
[MoCE: Adaptive Mixture of Contextualization Experts for Byte-based Neural Machine Translation](https://aclanthology.org/2025.naacl-long.47/) (Huang et al., NAACL 2025)
ACL