@inproceedings{wan-etal-2025-mamm,
title = "{MAMM}-Refine: A Recipe for Improving Faithfulness in Generation with Multi-Agent Collaboration",
author = "Wan, David and
Chen, Justin and
Stengel-Eskin, Elias and
Bansal, Mohit",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.naacl-long.498/",
doi = "10.18653/v1/2025.naacl-long.498",
pages = "9882--9901",
ISBN = "979-8-89176-189-6",
abstract = "Multi-agent collaboration among models has shown promise in reasoning tasks but is underexplored in long-form generation tasks like summarization and question-answering. We extend multi-agent multi-model reasoning to generation, specifically to improving faithfulness through refinement, i.e., revising model-generated outputs to remove factual inconsistencies. We investigate how iterative collaboration among multiple instances and types of large language models (LLMs) enhances subtasks in the refinement process, such as error detection, critiquing unfaithful sentences, and making corrections based on critiques. We design intrinsic evaluations for each subtask, with our findings indicating that both multi-agent (multiple instances) and multi-model (diverse LLM types) approaches benefit error detection and critiquing. Additionally, reframing critiquing and refinement as reranking rather than generation tasks improves multi-agent performance. We consolidate these insights into a final ``recipe'' called **M**ulti-**A**gent **M**ulti-**M**odel **Refine**ment (MAMM-Refine), where multi-agent and multi-model collaboration significantly boosts performance on three summarization datasets as well as on long-form question answering, demonstrating the effectiveness and generalizability of our recipe. Our code is publicly available."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wan-etal-2025-mamm">
<titleInfo>
<title>MAMM-Refine: A Recipe for Improving Faithfulness in Generation with Multi-Agent Collaboration</title>
</titleInfo>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Justin</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elias</namePart>
<namePart type="family">Stengel-Eskin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-189-6</identifier>
</relatedItem>
<abstract>Multi-agent collaboration among models has shown promise in reasoning tasks but is underexplored in long-form generation tasks like summarization and question-answering. We extend multi-agent multi-model reasoning to generation, specifically to improving faithfulness through refinement, i.e., revising model-generated outputs to remove factual inconsistencies. We investigate how iterative collaboration among multiple instances and types of large language models (LLMs) enhances subtasks in the refinement process, such as error detection, critiquing unfaithful sentences, and making corrections based on critiques. We design intrinsic evaluations for each subtask, with our findings indicating that both multi-agent (multiple instances) and multi-model (diverse LLM types) approaches benefit error detection and critiquing. Additionally, reframing critiquing and refinement as reranking rather than generation tasks improves multi-agent performance. We consolidate these insights into a final “recipe” called **M**ulti-**A**gent **M**ulti-**M**odel **Refine**ment (MAMM-Refine), where multi-agent and multi-model collaboration significantly boosts performance on three summarization datasets as well as on long-form question answering, demonstrating the effectiveness and generalizability of our recipe. Our code is publicly available.</abstract>
<identifier type="citekey">wan-etal-2025-mamm</identifier>
<identifier type="doi">10.18653/v1/2025.naacl-long.498</identifier>
<location>
<url>https://aclanthology.org/2025.naacl-long.498/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>9882</start>
<end>9901</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MAMM-Refine: A Recipe for Improving Faithfulness in Generation with Multi-Agent Collaboration
%A Wan, David
%A Chen, Justin
%A Stengel-Eskin, Elias
%A Bansal, Mohit
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%S Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-189-6
%F wan-etal-2025-mamm
%X Multi-agent collaboration among models has shown promise in reasoning tasks but is underexplored in long-form generation tasks like summarization and question-answering. We extend multi-agent multi-model reasoning to generation, specifically to improving faithfulness through refinement, i.e., revising model-generated outputs to remove factual inconsistencies. We investigate how iterative collaboration among multiple instances and types of large language models (LLMs) enhances subtasks in the refinement process, such as error detection, critiquing unfaithful sentences, and making corrections based on critiques. We design intrinsic evaluations for each subtask, with our findings indicating that both multi-agent (multiple instances) and multi-model (diverse LLM types) approaches benefit error detection and critiquing. Additionally, reframing critiquing and refinement as reranking rather than generation tasks improves multi-agent performance. We consolidate these insights into a final “recipe” called **M**ulti-**A**gent **M**ulti-**M**odel **Refine**ment (MAMM-Refine), where multi-agent and multi-model collaboration significantly boosts performance on three summarization datasets as well as on long-form question answering, demonstrating the effectiveness and generalizability of our recipe. Our code is publicly available.
%R 10.18653/v1/2025.naacl-long.498
%U https://aclanthology.org/2025.naacl-long.498/
%U https://doi.org/10.18653/v1/2025.naacl-long.498
%P 9882-9901
Markdown (Informal)
[MAMM-Refine: A Recipe for Improving Faithfulness in Generation with Multi-Agent Collaboration](https://aclanthology.org/2025.naacl-long.498/) (Wan et al., NAACL 2025)
ACL