SHADES: Towards a Multilingual Assessment of Stereotypes in Large Language Models

Margaret Mitchell, Giuseppe Attanasio, Ioana Baldini, Miruna Clinciu, Jordan Clive, Pieter Delobelle, Manan Dey, Sil Hamilton, Timm Dill, Jad Doughman, Ritam Dutt, Avijit Ghosh, Jessica Zosa Forde, Carolin Holtermann, Lucie-Aimée Kaffee, Tanmay Laud, Anne Lauscher, Roberto L Lopez-Davila, Maraim Masoud, Nikita Nangia, Anaelia Ovalle, Giada Pistilli, Dragomir Radev, Beatrice Savoldi, Vipul Raheja, Jeremy Qin, Esther Ploeger, Arjun Subramonian, Kaustubh Dhole, Kaiser Sun, Amirbek Djanibekov, Jonibek Mansurov, Kayo Yin, Emilio Villa Cueva, Sagnik Mukherjee, Jerry Huang, Xudong Shen, Jay Gala, Hamdan Al-Ali, Tair Djanibekov, Nurdaulet Mukhituly, Shangrui Nie, Shanya Sharma, Karolina Stanczak, Eliza Szczechla, Tiago Timponi Torrent, Deepak Tunuguntla, Marcelo Viridiano, Oskar Van Der Wal, Adina Yakefu, Aurélie Névéol, Mike Zhang, Sydney Zink, Zeerak Talat


Abstract
Large Language Models (LLMs) reproduce and exacerbate the social biases present in their training data, and resources to quantify this issue are limited. While research has attempted to identify and mitigate such biases, most efforts have been concentrated around English, lagging the rapid advancement of LLMs in multilingual settings. In this paper, we introduce a new multilingual parallel dataset SHADES to help address this issue, designed for examining culturally-specific stereotypes that may be learned by LLMs. The dataset includes stereotypes from 20 regions around the world and 16 languages, spanning multiple identity categories subject to discrimination worldwide. We demonstrate its utility in a series of exploratory evaluations for both “base” and “instruction-tuned” language models. Our results suggest that stereotypes are consistently reflected across models and languages, with some languages and models indicating much stronger stereotype biases than others.
Anthology ID:
2025.naacl-long.600
Volume:
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Month:
April
Year:
2025
Address:
Albuquerque, New Mexico
Editors:
Luis Chiruzzo, Alan Ritter, Lu Wang
Venue:
NAACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
11995–12041
Language:
URL:
https://aclanthology.org/2025.naacl-long.600/
DOI:
Bibkey:
Cite (ACL):
Margaret Mitchell, Giuseppe Attanasio, Ioana Baldini, Miruna Clinciu, Jordan Clive, Pieter Delobelle, Manan Dey, Sil Hamilton, Timm Dill, Jad Doughman, Ritam Dutt, Avijit Ghosh, Jessica Zosa Forde, Carolin Holtermann, Lucie-Aimée Kaffee, Tanmay Laud, Anne Lauscher, Roberto L Lopez-Davila, Maraim Masoud, Nikita Nangia, Anaelia Ovalle, Giada Pistilli, Dragomir Radev, Beatrice Savoldi, Vipul Raheja, Jeremy Qin, Esther Ploeger, Arjun Subramonian, Kaustubh Dhole, Kaiser Sun, Amirbek Djanibekov, Jonibek Mansurov, Kayo Yin, Emilio Villa Cueva, Sagnik Mukherjee, Jerry Huang, Xudong Shen, Jay Gala, Hamdan Al-Ali, Tair Djanibekov, Nurdaulet Mukhituly, Shangrui Nie, Shanya Sharma, Karolina Stanczak, Eliza Szczechla, Tiago Timponi Torrent, Deepak Tunuguntla, Marcelo Viridiano, Oskar Van Der Wal, Adina Yakefu, Aurélie Névéol, Mike Zhang, Sydney Zink, and Zeerak Talat. 2025. SHADES: Towards a Multilingual Assessment of Stereotypes in Large Language Models. In Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 11995–12041, Albuquerque, New Mexico. Association for Computational Linguistics.
Cite (Informal):
SHADES: Towards a Multilingual Assessment of Stereotypes in Large Language Models (Mitchell et al., NAACL 2025)
Copy Citation:
PDF:
https://aclanthology.org/2025.naacl-long.600.pdf